Retrieval Based On Recognition Memory: Testing the Retrieval Effort Hypothesis

Jonin Pierre-Yves (1,2,3), Noël Audrey (4), Besson Gabriel (4), Muratot Sophie (4), Belliard Christain (5), Barbeau Emmanuel (6),
1) Centre de Recherche Cerveau et Cognition, CNRS UMR 5149, Toulouse, France; 2) Iona, Unité-Préjet VisaGest, Université de Rennes, INSERM, CNRS, IRSIA U 1228, Rennes, France; 3) CHU Pontchaillou, Service de Neurologie, Rennes, France; 4) Laboratoire de Psychologie: Cognition, Comportement et Communication, EA1285 LP3C, Université de Rennes 2, Rennes, France

Aim

Can recognition memory support a retrieval practice effect?

1. Experiment 1: recognition memory vs. restudying

- Between-subjects design, N = 76
- Recognition memory => typical Old/New task
- Matching for Age, Education, FSIQ, Verbal Memory
- Manipulation of the Intervening tasks:
 - 2 successive study-trials Group
 - 2 successive restudy-trials Group
- Test Group
- Main outcome: Performance at final test

(25 min. delay)

Before final test, study duration was on average 11 minutes in the «Study-Test» group, 7.4 minutes in the «Study» group and only 6.3 minutes in the «Test» group.

Still, «Study-Test» & «Test» conditions yielded better long-term memory (A,B), without increase in False Alarms (C), and a «Test» condition led to better 25 minutes – retention (D).

2. Results 1

3. Experiment 2: familiarity practice vs. restudying

- Probing familiarity-based recognition memory: The « Speed and Accuracy Boosting procedure » (SAB) is a speeded Old/New memory test providing a direct estimate of familiarity-based recognition memory (S).
- Use of the SAB procedure for all test phases

Between-subjects design, N = 30
- Manipulation of the learning schedules:
 - 1, 2 or 3 repetitions of study trials
- Matching for Age, Education, FSIQ, Verbal Memory
- Main outcomes: Performance at short- and long-term final tests

Time spent studying does not drive learning efficiency. Instead, Experiment 2 provides unique evidence that learning occurs through repeated familiarity-based retrieval, i.e. even when retrieval is automatic.

Subjects in the « Study » group spent twice as much time studying AND had up to three times more opportunities to encode the stimuli

Similar minimal reaction times (mTRTs) were achieved in both groups, well below 400ms, strongly constraining responses to familiarity-based recognition memory (5).

Repeated retrieval was therefore based on automatic & fast processing, rather than slow, effortful, recollection. This did not come with an extra false alarms cost (C&D).

Experiment 1 shows that the retrieval practice effect can be observed when retrieval is based on recognition memory rather than recall. Thus, learning does occur during recognition testing.

Importantly, both experiments show that the benefits of memory retrieval based on recognition memory are immune to negative side effects like extra false alarms.

When retrieval is constrained to fast and automatic processes (around 320 ms), this being mostly familiarity-based, the generation of elaborative retrieval cues and/or effortful (controlled) processing are quite unlikely. Even there, extensive restudying does not outreach retrieval practice. Repeated automatic retrieval yields similar learning levels than extensive restudying, up to a 6 months delay.

4. Discussion

3. Experiment 1: recognition memory vs. restudying

- The finding that taking memory tests improves long-term memory and overcomes repeated studying is called retrieval practice effect or a testing effect (1,2,3). While it has been much replicated within recall paradigms, a mechanistic account is still lacking. One way to move forward is to test predictions derived from current accounts

- The « Retrieval Effort Hypothesis » states that controlled (effortful) retrieval (e.g. recall) supports more elaborate and integrative processing than passive restudying, thus increasing the available retrieval cues (3,4)

- Since recognition memory involves much less controlled retrieval than recall, repeated recognition should not yield a retrieval practice effect, especially if familiarity alone supports recognition

Experiment 1 provides the first evidence for a retrieval practice effect based on recognition memory. However, a contribution of controlled recollective processes cannot be ruled out, which is addressed in experiment 2.

References