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 • Diffusion MRI measures the movement of water molecules and
 gives information about white matter microstructure.

 • The acquisition sequences rely on magnetic field gradients.

 • While pulsed gradient waveforms are the most used because of
their simplicity, it has been shown that oscillating arbitrary waveforms
provide better estimation of microstructure parameters(1).

 • Since every function of the time that respect a few constraints
provide a possible gradient waveform, the sampling remains 
largely unexploited.

 • Here are several possible gradient waveforms:

 • Magnetic Resonance Imaging (MRI) is a 
non-invasive technique for the observation 
of the tissue in vivo.

 • Many signals are simulated for several
gradient waveforms and several 

microstructure parameters using CAMINO(2).

 • 180 different microstructure are generated with
parallel fibers and different densities, radii 

distributions. These microstructure are rotated to 
represent several orientations. 

 • 2600 gradients are used in the 
simulations. Their direction is constant
and they are piecewise constant 
with 4 steps of time.

 • The gradients are spread 
over 40 directions that cover
 the unit sphere.

III

 • We want to find a sparse representation for the signal.
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 • Dictionary learning is made over 
the families of signals previously
generated.

 • The learning is made by updating
alternatively the dictionary     and 
the sparse signals    to minimize:

{ {

fidelity sparsity

~~

 • We select some lines of dictionary (which 
correspond to gradients) in several ways:

 • We can restrict the dictionary to the selected
gradients.

 • We can construct a sparse signal using 
only a  few measurements (with compressed 
sensing techniques, in particular,    -minimization)

. =  • We can reconstruct a full signal
 using only a  few measurements

 • We use only the measures associated to 
the selected gradients.
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 • Encouraging results that show an efficient reconstruction

 • Our gradient selection heuristic performs better than 
randomness (often used in compressed sensing)

 • We can still improve :
 - The gradients given in input
 - The learning and reconstruction parameters
 - The criterion to optimize for the subsampling (for example, the 
incoherence of the columns
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 - randomly
 - uncorrelated lines (minimizing the norm of the
restricted correlation matrix)

-minimization

(2) P. A. Cook, Y. Bai, S. Nedjati-Gilani, K. K. Seunarine, M. G. Hall, G. J. Parker, D. C. Alexander. "Camino: Open-Source 
Diffusion-MRI Reconstruction and Processing", 14th Scientific Meeting of the International Society for Magnetic Resonance in 
Medicine, Seattle, WA, USA, (2006) p. 2759.

(1) Ivana Drobnjak, Bernard Siow, and Daniel C. Alexander. "Optimizing gradient waveforms for microstructure sensitivity in 
diffusion-weighted MR". In: Journal of Magnetic Resonance 206.1 (2010), pp. 41-51.
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 - minimizining the coherence

 • The dictionary learning is 
performed by the tool SPAMS
in python.


