J. L. Albasanz, S. Perez, M. Barrachina, I. Ferrer, and M. Martín, Upregulation of adenosine receptors in the frontal cortex in Alzheimer's disease. Brain Pathol, vol.18, pp.211-219, 2008.

P. Alonso-andrés, J. L. Albasanz, I. Ferrer, and M. Martín, Purine-related metabolites and their converting enzymes are altered in frontal, parietal and temporal cortex at early stages of Alzheimer's disease pathology, Brain Pathol, 2018.

L. Antonioli, C. Blandizzi, P. Pacher, and G. Haskó, Immunity, inflammation and cancer: a leading role for adenosine, Nat. Rev. Cancer, vol.13, pp.842-857, 2013.

G. W. Arendash, T. Mori, C. Cao, M. Mamcarz, M. Runfeldt et al., Caffeine reverses cognitive impairment and decreases brain amyloidbeta levels in aged Alzheimer's disease mice, J. Alzheimers Dis, vol.17, pp.661-680, 2009.

G. W. Arendash, W. Schleif, K. Rezai-zadeh, E. K. Jackson, L. C. Zacharia et al., Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production, Neuroscience, vol.142, pp.941-952, 2006.

R. Baeta-corral, B. Johansson, and L. Giménez-llort, Long-term treatment with low-dose caffeine worsens BPSD-like profile in 3xTg-AD mice model of Alzheimer's disease and affects mice with normal aging, Front. Pharmacol, vol.9, p.79, 2018.

V. L. Batalha, D. G. Ferreira, J. E. Coelho, J. S. Valadas, R. Gomes et al., The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function, Sci. Rep, vol.6, p.31493, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01833352

V. L. Batalha, J. M. Pego, B. M. Fontinha, A. R. Costenla, J. S. Valadas et al., Adenosine A(2A) receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation, Mol. Psychiatry, vol.18, pp.320-331, 2013.

D. Blum, R. Hourez, M. Galas, P. Popoli, and S. N. Schiffmann, Adenosine receptors and Huntington's disease: implications for pathogenesis and therapeutics, Lancet Neurol, vol.2, pp.366-374, 2003.

D. Boison, Adenosinergic signaling in epilepsy, Neuropharmacology, vol.104, pp.131-139, 2016.

P. A. Borea, S. Gessi, S. Merighi, and K. Varani, Adenosine as a multisignalling guardian angel in human diseases: When, where and how does it exert its protective effects?, Trends Pharmacol. Sci, vol.37, pp.419-434, 2016.

D. Borota, E. Murray, G. Keceli, A. Chang, J. M. Watabe et al., Post-study caffeine administration enhances memory consolidation in humans, Nat. Neurosci, vol.17, pp.201-203, 2014.

D. Brambilla, D. Chapman, and R. Greene, Adenosine mediation of presynaptic feedback inhibition of glutamate release, Neuron, vol.46, pp.275-283, 2005.

M. R. Brier, B. Gordon, K. Friedrichsen, J. Mccarthy, A. Stern et al., Tau and A? imaging, CSF measures, and cognition in Alzheimer's disease, Sci. Transl. Med, vol.8, pp.338-66, 2016.

J. M. Brundege, L. Diao, W. R. Proctor, and T. V. Dunwiddie, The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus, Neuropharmacology, vol.36, pp.1201-1210, 1997.

G. Burnstock, Purine and pyrimidine receptors, Cell. Mol. Life Sci, vol.64, pp.1471-1483, 2007.

P. M. Canas, L. O. Porciúncula, G. M. Cunha, C. G. Silva, N. J. Machado et al., Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway, J. Neurosci, vol.29, pp.14741-14751, 2009.

J. Chen, Adenosine receptor control of cognition in normal and disease, Int. Rev. Neurobiol, vol.119, pp.257-307, 2014.

O. Chever, C. Lee, R. , and N. , Astroglial connexin43 hemichannels tune basal excitatory synaptic transmission, J. Neurosci, vol.34, pp.11228-11232, 2014.

A. Cieslak, E. E. Smith, J. Lysack, and Z. Ismail, Case series of mild behavioral impairment: toward an understanding of the early stages of neurodegenerative diseases affecting behavior and cognition, Int. Psychogeriatr, vol.30, pp.273-280, 2018.

E. Coppi, L. Cellai, G. Maraula, I. Dettori, A. Melani et al., Role of adenosine in oligodendrocyte precursor maturation, Front. Cell. Neurosci, vol.9, p.155, 2015.

E. Coppi, L. Cellai, G. Maraula, A. M. Pugliese, and F. Pedata, , 2013.

, Adenosine A 2 A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures, Neuropharmacology, vol.73, pp.301-310

S. Cristóvão-ferreira, G. Navarro, M. Brugarolas, K. Pérez-capote, S. H. Vaz et al., A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA transport into astrocytes, Purinergic Signal, vol.9, pp.433-449, 2013.

G. M. Cunha, P. M. Canas, C. S. Melo, J. Hockemeyer, C. E. Müller et al., Adenosine A2A receptor blockade prevents memory dysfunction caused by ?-amyloid peptides but not by scopolamine or MK-801, Exp. Neurol, vol.210, pp.776-781, 2008.
DOI : 10.1016/j.expneurol.2007.11.013

R. A. Cunha, How does adenosine control neuronal dysfunction and neurodegeneration?, J. Neurochem, vol.139, pp.1019-1055, 2016.
DOI : 10.1111/jnc.13724

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/jnc.13724

O. P. Dall'igna, P. Fett, M. W. Gomes, D. O. Souza, R. A. Cunha et al., Caffeine and adenosine A(2a) receptor antagonists prevent betaamyloid (25-35)-induced cognitive deficits in mice, Exp. Neurol, vol.203, pp.241-245, 2007.

O. P. Dall'igna, L. O. Porciúncula, D. O. Souza, R. A. Cunha, D. R. Lara et al., Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity, Br. J. Pharmacol, vol.138, pp.1207-1209, 2003.

C. Dansokho, P. Aucouturier, D. , and G. , Beneficial effect of interleukin-2-based immunomodulation in Alzheimer-like pathology, Brain, vol.140, p.39, 2017.

B. De-strooper, Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process, Physiol. Rev, vol.90, pp.465-494, 2010.

F. J. Dennissen, M. Anglada-huguet, A. Sydow, E. Mandelkow, and E. Mandelkow, Adenosine A1 receptor antagonist rolofylline alleviates axonopathy caused by human Tau K280, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.11597-11602, 2016.
DOI : 10.1073/pnas.1603119113

URL : https://www.pnas.org/content/pnas/113/41/11597.full.pdf

A. G. Efthymiou and A. M. Goate, Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk, Mol. Neurodegener, vol.12, p.43, 2017.

M. H. Eskelinen, T. Ngandu, J. Tuomilehto, H. Soininen, and M. Kivipelto, Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study, J. Alzheimers Dis, vol.16, pp.85-91, 2009.

E. Faivre, J. E. Coehlo, K. Zornbach, E. Malik, Y. Baqi et al., Beneficial effect of a selective adenosine A 2A receptor antagonist in the APPswe/PS1de9 mouse model of Alzheimer's Disease, Front. Mol. Neurosci, vol.10, p.14, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01930489

J. J. Ferreira, A. Lees, J. Rocha, W. Poewe, O. Rascol et al., Opicapone as an adjunct to levodopa in patients with Parkinson's disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial, Lancet Neurol, vol.15, pp.336-337, 2016.

R. N. Ferreira, A. S. De-miranda, N. P. Rocha, A. C. Silva, A. L. Teixeira et al., Neurotrophic factors in Parkinson's disease: What have we learned from pre-clinical and clinical studies?, Curr. Med. Chem, 2018.

G. Fisone, A. Borgkvist, and A. Usiello, Caffeine as a psychomotor stimulant: mechanism of action, Cell. Mol. Life Sci, vol.61, pp.857-872, 2004.

V. Flaten, C. Laurent, J. E. Coelho, U. Sandau, V. L. Batalha et al., From epidemiology to pathophysiology: what about caffeine in Alzheimer's disease?, Biochem. Soc. Trans, vol.42, pp.587-592, 2014.

B. B. Fredholm, K. Bättig, J. Holmén, A. Nehlig, and E. E. Zvartau, Actions of caffeine in the brain with special reference to factors that contribute to its widespread use, Pharmacol. Rev, vol.51, pp.83-133, 1999.

B. B. Fredholm, J. Chen, R. A. Cunha, P. Svenningsson, and J. M. Vaugeois, Adenosine and brain function, Int. Rev. Neurobiol, vol.63, pp.63007-63010, 2005.

R. P. Gelber, H. Petrovitch, K. H. Masaki, G. W. Ross, and L. R. White, , 2011.

, Coffee intake in midlife and risk of dementia and its neuropathologic correlates, J. Alzheimers Dis, vol.23, pp.607-615

J. George, F. Q. Gonçalves, G. Cristóvão, L. Rodrigues, J. R. Meyer-fernandes et al., Different danger signals differently impact on microglial proliferation through alterations of ATP release and extracellular metabolism, Glia, vol.63, pp.1636-1645, 2015.

L. Giménez-llort, S. N. Schiffmann, T. Shmidt, L. Canela, L. Camón et al., Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain, Neurobiol. Learn. Mem, vol.87, pp.42-56, 2007.

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-davies, and B. A. Macvicar, Brain metabolism dictates the polarity of astrocyte control over arterioles, Nature, vol.456, pp.745-749, 2008.

C. F. Haskell, D. O. Kennedy, K. A. Wesnes, and A. B. Scholey, Cognitive and mood improvements of caffeine in habitual consumers and habitual nonconsumers of caffeine, Psychopharmacology, vol.179, pp.813-825, 2005.

R. A. Hauser, C. W. Olanow, K. D. Kieburtz, E. Pourcher, A. Docu-axelerad et al., Tozadenant (SYN115) in patients with Parkinson's disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial, Lancet Neurol, vol.13, issue.14, pp.70148-70154, 2014.

E. Horgusluoglu-moloch, K. Nho, S. L. Risacher, S. Kim, T. Foroud et al., Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer's disease, Neurobiol. Aging, vol.60, pp.92-103, 2017.

Z. Huang, Z. Zhang, and W. Qu, Roles of adenosine and its receptors in sleep-wake regulation, Int. Rev. Neurobiol, vol.119, pp.349-371, 2014.

S. A. Hunsucker, J. Spychala, M. , and B. S. , Human cytosolic 5'nucleotidase I: characterization and role in nucleoside analog resistance, J. Biol. Chem, vol.276, pp.10498-10504, 2001.

A. Ilie, J. V. Raimondo, and C. J. Akerman, Adenosine release during seizures attenuates GABAA receptor-mediated depolarization, J. Neurosci, vol.32, pp.5321-5332, 2012.

Y. Imura, Y. Morizawa, R. Komatsu, K. Shibata, Y. Shinozaki et al., Microglia release ATP by exocytosis, Glia, vol.61, pp.1320-1330, 2013.

C. Ising and M. T. Heneka, Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration, Cell Death Dis, vol.9, p.120, 2018.

A. Jerónimo-santos, V. L. Batalha, C. E. Müller, Y. Baqi, A. M. Sebastião et al., Impact of in vivo chronic blockade of adenosine A2A receptors on the BDNF-mediated facilitation of LTP, Neuropharmacology, vol.83, pp.99-106, 2014.

J. Jung, H. W. Jo, H. Kwon, J. , and N. Y. , ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury, Biomed Res. Int, p.936891, 2014.

J. Jung, Y. H. Shin, H. Konishi, S. J. Lee, and H. Kiyama, Possible ATP release through lysosomal exocytosis from primary sensory neurons, Biochem. Biophys. Res. Commun, vol.430, pp.488-493, 2013.

A. Kachroo and M. A. Schwarzschild, Adenosine A2A receptor gene disruption protects in an ?-synuclein model of Parkinson's disease, Ann. Neurol, vol.71, pp.278-282, 2012.

A. Kerkhofs, A. C. Xavier, B. S. Da-silva, P. M. Canas, S. Idema et al., Caffeine controls glutamatergic synaptic transmission and pyramidal neuron excitability in human neocortex, Front. Pharmacol, vol.8, p.899, 2017.

D. Kim and M. S. Bynoe, A2A adenosine receptor regulates the human blood-brain barrier permeability, Mol. Neurobiol, vol.52, pp.664-678, 2015.

A. E. King, M. A. Ackley, C. E. Cass, J. D. Young, and S. A. Baldwin, Nucleoside transporters: from scavengers to novel therapeutic targets, Trends Pharmacol. Sci, vol.27, pp.416-425, 2006.

S. Latini and F. Pedata, Adenosine in the central nervous system: release mechanisms and extracellular concentrations, J. Neurochem, vol.79, pp.463-484, 2001.

C. Laurent, L. Buée, and D. Blum, Tau and neuroinflammation: What impact for Alzheimer's disease and tauopathies?, Biomed. J, vol.41, pp.21-33, 2018.

C. Laurent, S. Burnouf, B. Ferry, V. L. Batalha, J. E. Coelho et al., A2A adenosine receptor deletion is protective in a mouse model of Tauopathy, Mol. Psychiatry, vol.21, pp.97-107, 2016.

C. Laurent, S. Eddarkaoui, M. Derisbourg, A. Leboucher, D. Demeyer et al., Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology, Neurobiol. Aging, vol.35, pp.2079-2090, 2014.

C. Lee, C. Chang, C. Lin, H. Lai, Y. Kao et al., Adenosine augmentation evoked by an ENT1 inhibitor improves memory impairment and neuronal plasticity in the APP/PS1 mouse model of Alzheimer's disease, Mol. Neurobiol, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01833298

C. E. Leyns and D. M. Holtzman, Glial contributions to neurodegeneration in tauopathies, Mol. Neurodegener, vol.12, p.50, 2017.
DOI : 10.1186/s13024-017-0192-x

URL : https://molecularneurodegeneration.biomedcentral.com/track/pdf/10.1186/s13024-017-0192-x?site=molecularneurodegeneration.biomedcentral.com

S. Li, N. H. Geiger, M. L. Soliman, L. Hui, J. D. Geiger et al., Caffeine, through adenosine A3 receptor-mediated actions, suppresses amyloid-? protein precursor internalization and amyloid-? generation, J. Alzheimers Dis, vol.47, pp.73-83, 2015.
DOI : 10.3233/jad-142223

URL : http://europepmc.org/articles/pmc4609209?pdf=render

J. Linden, C. , and C. , Regulation of lymphocyte function by adenosine, Arterioscler. Thromb. Vasc. Biol, vol.32, pp.2097-2103, 2012.
DOI : 10.1161/atvbaha.111.226837

URL : https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.111.226837

Y. Liu, M. Alahiri, B. Ulloa, B. Xie, and S. A. Sadiq, Adenosine A2A receptor agonist ameliorates EAE and correlates with Th1 cytokine-induced blood brain barrier dysfunction via suppression of MLCK signaling pathway, Immun. Inflamm. Dis, vol.6, pp.72-80, 2018.
DOI : 10.1002/iid3.187

URL : http://onlinelibrary.wiley.com/doi/10.1002/iid3.187/pdf

G. Livingston, A. Sommerlad, V. Orgeta, S. G. Costafreda, J. Huntley et al., Dementia prevention, intervention, and care, Lancet, vol.390, issue.17, pp.31363-31369, 2017.
DOI : 10.1016/s0140-6736(17)31363-6

URL : http://discovery.ucl.ac.uk/1567635/1/Livingston_Dementia_prevention_intervention_care.pdf

J. Lopatá?, N. Dale, and B. G. Frenguelli, Pannexin-1-mediated ATP release from area CA3 drives mGlu5-dependent neuronal oscillations, Neuropharmacology, vol.93, pp.219-228, 2015.

M. M. Lorist and M. Tops, Caffeine, fatigue, and cognition, Brain Cogn, vol.53, pp.82-94, 2003.
DOI : 10.1016/s0278-2626(03)00206-9

J. Lu, J. Cui, X. Li, X. Wang, Y. Zhou et al., An antiParkinson's disease drug via targeting adenosine A2A receptor enhances amyloid-? generation and ?-secretase activity, PLoS One, vol.11, 2016.
DOI : 10.1371/journal.pone.0166415

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166415&type=printable

M. H. Madeira, R. Boia, F. Elvas, T. Martins, R. A. Cunha et al., Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury, Transl. Res, vol.169, pp.112-128, 2016.
DOI : 10.1016/j.trsl.2015.11.005

L. Maia and A. De-mendonça, Does caffeine intake protect from Alzheimer's disease?, Eur. J. Neurol, vol.9, pp.377-382, 2002.
DOI : 10.1046/j.1468-1331.2002.00421.x

M. Matos, E. Augusto, P. Agostinho, R. A. Cunha, C. et al., Antagonistic interaction between adenosine A2A receptors and Na + /K +ATPase-?2 controlling glutamate uptake in astrocytes, J. Neurosci, vol.33, pp.18492-18502, 2013.
DOI : 10.1523/jneurosci.1828-13.2013

URL : http://www.jneurosci.org/content/33/47/18492.full.pdf

M. Matos, E. Augusto, N. J. Machado, A. Santos-rodrigues, R. A. Cunha et al., Astrocytic adenosine A2A receptors control the amyloid-? peptide-induced decrease of glutamate uptake, J. Alzheimers Dis, vol.31, pp.555-567, 2012.

M. Matos, E. Augusto, A. D. Santos-rodrigues, M. A. Schwarzschild, J. F. Chen et al., Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes, Glia, vol.60, pp.702-716, 2012.
DOI : 10.1002/glia.22290

J. M. Mcclure, D. S. O'leary, and T. J. Scislo, Neural and humoral control of regional vascular beds via A1 adenosine receptors located in the nucleus tractus solitarii, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.300, 2011.

A. Melani, L. Pantoni, C. Corsi, L. Bianchi, A. Monopoli et al., Striatal outflow of adenosine, excitatory amino acids, gammaaminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage, Stroke, vol.30, pp.2448-2454, 1999.
DOI : 10.1161/01.str.30.11.2448

URL : http://stroke.ahajournals.org/content/strokeaha/30/11/2448.full.pdf

G. Mukandala, R. Tynan, S. Lanigan, and J. J. Connor, The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS, Brain Sci, vol.6, p.6, 2016.

E. Murillo-rodriguez, C. Blanco-centurion, C. Sanchez, D. Piomelli, and P. J. Shiromani, Anandamide enhances extracellular levels of adenosine and induces sleep: an in vivo microdialysis study, Sleep, vol.26, pp.943-947, 2003.

B. V. Nagpure and J. Bian, Hydrogen sulfide inhibits A2A adenosine receptor agonist induced ?-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway, PLoS One, vol.9, p.88508, 2014.

A. Nehlig, Interindividual differences in caffeine metabolism and factors driving caffeine consumption, Pharmacol. Rev, vol.70, pp.384-411, 2018.
DOI : 10.1124/pr.117.014407

E. A. Newell, J. L. Exo, J. D. Verrier, T. C. Jackson, D. G. Gillespie et al., 2' ,3'-cAMP, 3'-AMP, 2'-AMP and adenosine inhibit TNF-? and CXCL10 production from activated primary murine microglia via A2A receptors, Brain Res, vol.1594, pp.27-35, 2015.
DOI : 10.1016/j.brainres.2014.10.059

URL : http://europepmc.org/articles/pmc4262711?pdf=render

W. Oertel and J. B. Schulz, Current and experimental treatments of Parkinson disease: a guide for neuroscientists, J. Neurochem, vol.139, pp.325-337, 2016.
DOI : 10.1111/jnc.13750

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/jnc.13750

J. A. Orellana, Physiological functions of glial cell hemichannels, Adv. Exp. Med. Biol, vol.949, pp.93-108, 2016.
DOI : 10.1007/978-3-319-40764-7_5

J. A. Orellana, R. Moraga-amaro, R. Díaz-galarce, S. Rojas, C. J. Maturana et al., Restraint stress increases hemichannel activity in hippocampal glial cells and neurons, Front. Cell. Neurosci, vol.9, p.102, 2015.
DOI : 10.3389/fncel.2015.00102

URL : https://www.frontiersin.org/articles/10.3389/fncel.2015.00102/pdf

A. G. Orr, E. C. Hsiao, M. M. Wang, K. Ho, D. H. Kim et al., Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory, Nat. Neurosci, vol.18, pp.423-434, 2015.
DOI : 10.1038/nn.3930

URL : http://europepmc.org/articles/pmc4340760?pdf=render

A. G. Orr, I. Lo, H. Schumacher, K. Ho, M. Gill et al., Istradefylline reduces memory deficits in aging mice with amyloid pathology, Neurobiol. Dis, vol.110, pp.29-36, 2018.
DOI : 10.1016/j.nbd.2017.10.014

N. Pagnussat, A. S. Almeida, D. M. Marques, F. Nunes, G. C. Chenet et al., Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice, Br. J. Pharmacol, vol.172, pp.3831-3845, 2015.
DOI : 10.1111/bph.13180

URL : http://europepmc.org/articles/pmc4523339?pdf=render

F. E. Parkinson, V. L. Damaraju, K. Graham, S. Y. Yao, S. A. Baldwin et al., Molecular biology of nucleoside transporters and their distributions and functions in the brain, Curr. Top. Med. Chem, vol.11, pp.948-972, 2011.

G. S. Pereira, J. I. Rossato, J. J. Sarkis, M. Cammarota, C. D. Bonan et al., Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat, Neurobiol. Learn. Mem, vol.83, pp.217-223, 2005.

T. Porkka-heiskanen and A. V. Kalinchuk, Adenosine, energy metabolism and sleep homeostasis, Sleep Med. Rev, vol.15, pp.123-135, 2011.
DOI : 10.1016/j.smrv.2010.06.005

T. Porkka-heiskanen, R. E. Strecker, M. Thakkar, A. A. Bjorkum, R. W. Greene et al., Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness, Science, vol.276, pp.1265-1268, 1997.

J. R. Prasanthi, B. Dasari, G. Marwarha, T. Larson, X. Chen et al., Caffeine protects against oxidative stress and Alzheimer's diseaselike pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic, Biol. Med, vol.49, 2010.
DOI : 10.1016/j.freeradbiomed.2010.07.007

URL : http://europepmc.org/articles/pmc2930139?pdf=render

T. J. Qazi, Z. Quan, A. Mir, and H. Qing, Epigenetics in Alzheimer's disease: perspective of DNA methylation, Mol. Neurobiol, vol.55, pp.1026-1044, 2018.

N. Rebola, R. Lujan, R. A. Cunha, M. , and C. , Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses, Neuron, vol.57, pp.121-134, 2008.
DOI : 10.1016/j.neuron.2007.11.023

URL : https://doi.org/10.1016/j.neuron.2007.11.023

C. Reitz, C. Brayne, and R. Mayeux, Epidemiology of Alzheimer disease, Nat. Rev. Neurol, vol.7, pp.137-152, 2011.

K. Ritchie, I. Carrière, A. De-mendonca, F. Portet, J. F. Dartigues et al., The neuroprotective effects of caffeine: a prospective population study (the Three City Study), Neurology, vol.69, pp.536-545, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00168786

P. A. Rosenberg, L. , and Y. , Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex, Brain Res, vol.692, pp.227-232, 1995.

J. V. Sanchez-mut, E. Aso, N. Panayotis, I. Lott, M. Dierssen et al., DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease, Brain, vol.136, pp.3018-3027, 2013.

C. Santos, J. Costa, J. Santos, A. Vaz-carneiro, and N. Lunet, Caffeine intake and dementia: systematic review and meta-analysis, J. Alzheimers Dis, vol.20, pp.187-204, 2010.
DOI : 10.3233/jad-2010-091387

URL : https://content.iospress.com:443/download/journal-of-alzheimers-disease/jad091387?id=journal-of-alzheimers-disease%2Fjad091387

D. A. Sawyer, H. L. Julia, and A. C. Turin, Caffeine and human behavior: arousal, anxiety, and performance effects, J. Behav. Med, vol.5, pp.415-439, 1982.
DOI : 10.1007/bf00845371

P. Scheltens, K. Blennow, M. M. Breteler, B. De-strooper, G. B. Frisoni et al., Alzheimer's disease, Lancet, vol.388, pp.505-517, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01723790

B. Sharma, P. , and S. , Action of caffeine as an amyloid inhibitor in the aggregation of A?16-22 peptides, J. Phys. Chem. B, vol.120, pp.9019-9033, 2016.

A. C. Silva, C. Lemos, F. Q. Goncalves, A. V. Pliassova, N. J. Machado et al., Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer's disease, Neurobiol. Dis, vol.350, pp.99-108, 2018.

H. J. Smit, R. , and P. J. , Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers, Psychopharmacology, vol.152, pp.167-173, 2000.

M. Temido-ferreira, D. G. Ferreira, V. L. Batalha, I. Marques-morgado, J. E. Coelho et al., Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors, Mol. Psychiatry, 2018.

M. Travassos, I. Santana, I. Baldeiras, M. Tsolaki, O. Gkatzima et al., Does caffeine consumption modify cerebrospinal fluid amyloid? levels in patients with Alzheimer's disease?, J. Alzheimers Dis, vol.47, pp.1069-1078, 2015.

S. Viana-da-silva, M. G. Haberl, P. Zhang, P. Bethge, C. Lemos et al., Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors, Nat. Commun, vol.7, p.11915, 2016.

R. L. Williams-karnesky, U. S. Sandau, T. A. Lusardi, N. K. Lytle, J. M. Farrell et al., Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis, J. Clin. Invest, vol.123, pp.3552-3563, 2013.

P. Wostyn, D. Van-dam, K. Audenaert, and P. P. De-deyn, Increased cerebrospinal fluid production as a possible mechanism underlying caffeine's protective effect against Alzheimer's disease, Int. J. Alzheimers Dis, p.617420, 2011.

H. Zimmermann, Signalling via ATP in the nervous system, Trends Neurosci, vol.17, pp.420-426, 1994.

H. Zimmermann, Extracellular metabolism of ATP and other nucleotides, Naunyn Schmiedebergs Arch. Pharmacol, vol.362, pp.299-309, 2000.

H. Zimmermann, Nucleotide signaling in nervous system development, Pflugers Arch, vol.452, pp.573-588, 2006.

H. Zimmermann, M. Zebisch, and N. Sträter, Cellular function and molecular structure of ecto-nucleotidases, Purinergic Signal, vol.8, pp.437-502, 2012.

S. Zur-nedden, A. S. Doney, and B. G. Frenguelli, Modulation of intracellular ATP determines adenosine release and functional outcome in response to metabolic stress in rat hippocampal slices and cerebellar granule cells, J. Neurochem, vol.128, pp.111-124, 2014.

, Conflict of Interest Statement: The authors declare that the research was

©. Copyright, . Cellai, . Carvalho, . Faivre, . Deleau et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, 2018.