P. T. Nelson, I. Alafuzoff, E. H. Bigio, C. Bouras, H. Braak et al., Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature, J Neuropathol Exp Neurol, vol.71, pp.362-81, 2012.

H. Braak and E. Braak, Staging of Alzheimer's disease-related neurofibrillary changes, Neurobiol Aging, vol.16, pp.271-279, 1995.
DOI : 10.1016/0197-4580(95)00021-6

P. T. Nelson, H. Braak, and W. R. Markesbery, Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship, J Neuropathol Exp Neurol, vol.68, pp.1-14, 2009.
DOI : 10.1097/nen.0b013e3181919a48

URL : https://academic.oup.com/jnen/article-pdf/68/1/1/9557732/68-1-1.pdf

S. J. Webster, A. D. Bachstetter, P. T. Nelson, F. A. Schmitt, V. Eldik et al., Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models, Front Genet, vol.5, p.88, 2014.

A. C. Lo, E. Iscru, D. Blum, I. Tesseur, Z. Callaerts-vegh et al., Amyloid and tau neuropathology differentially affect prefrontal synaptic plasticity and cognitive performance in mouse models of Alzheimer's disease, J Alzheimers Dis, vol.37, pp.109-134, 2013.

A. Van-der-jeugd, T. Ahmed, S. Burnouf, K. Belarbi, M. Hamdame et al., Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission, Neurobiol Learn Mem, vol.95, pp.296-304, 2011.

A. Van-der-jeugd, B. Vermaercke, A. C. Lo, M. Hamdane, D. Blum et al., Progressive age-related cognitive decline in tau mice, J Alzheimers Dis, vol.37, pp.777-88, 2013.

P. Lau, C. S. Frigerio, D. Strooper, and B. , Variance in the identification of microRNAs deregulated in Alzheimer's disease and possible role of lincRNAs in the pathology: the need of larger datasets, Ageing Res Rev, vol.17, pp.43-53, 2014.

S. Pichler, W. Gu, D. Hartl, G. Gasparoni, P. Leidinger et al., The miRNome of Alzheimer's disease: consistent downregulation of the miR132/212 cluster, Neurobiol Aging, vol.2016, pp.1-10

N. Ludwig, P. Leidinger, K. Becker, C. Backes, T. Fehlmann et al., Distribution of miRNA expression across human tissues, Nucleic Acids Res, vol.44, pp.3865-77, 2016.

G. Schratt, microRNAs at the synapse, Nat Rev Neurosci, vol.10, pp.842-851, 2009.

E. Salta, D. Strooper, and B. , Noncoding RNAs in neurodegeneration, Nat Rev Neurosci, 2017.

P. Lau and B. De-strooper, Dysregulated microRNAs in neurodegenerative disorders, Semin Cell Dev Biol, vol.21, pp.768-73, 2010.

Q. Gu, D. Yu, Z. Hu, X. Liu, Y. Yang et al., miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement, Nat Commun, vol.6, p.6789, 2015.

Z. Hu, D. Yu, Q. Gu, Y. Yang, K. Tu et al., miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic longterm depression, Nat Commun, vol.5, p.3263, 2014.

J. E. Cohen, P. R. Lee, S. Chen, W. Li, and R. D. Fields, MicroRNA regulation of homeostatic synaptic plasticity, Proc Natl Acad Sci, vol.108, pp.11650-11655, 2011.

G. M. Schratt, F. Tuebing, E. A. Nigh, C. G. Kane, M. E. Sabatini et al., A brain-specific microRNA regulates dendritic spine development, Nature, vol.439, pp.283-292, 2006.

H. L. Scott, F. Tamagnini, K. E. Narduzzo, J. L. Howarth, Y. B. Lee et al., MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex, Eur J Neurosci, vol.36, pp.2941-2949, 2012.

Z. Hu, J. Zhao, T. Hu, Y. Luo, J. Zhu et al., miR-501-3p mediates the activitydependent regulation of the expression of AMPA receptor subunit GluA1, J Cell Biol, vol.208, pp.949-59, 2015.

M. Costa-mattioli, W. S. Sossin, E. Klann, and N. Sonenberg, Translational control of long-lasting synaptic plasticity and memory, Neuron, vol.61, pp.10-26, 2009.

R. Radde, T. Bolmont, S. A. Kaeser, J. Coomaraswamy, D. Lindau et al., Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology, EMBO Rep, vol.7, pp.940-946, 2006.

K. Schindowski, A. Bretteville, K. Leroy, S. Bégard, J. Brion et al., Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits, Am J Pathol, vol.169, pp.599-616, 2006.

A. Thathiah, K. Horré, A. Snellinx, E. Vandewyer, Y. Huang et al., ?Arrestin 2 regulates A? generation and ?-secretase activity in Alzheimer's disease, Nat Med, vol.19, pp.43-52, 2012.

M. Dodt, J. Roehr, R. Ahmed, and C. Dieterich, FLEXBAR-flexible barcode and adapter processing for next-generation sequencing platforms, Biology (Basel), vol.1, pp.895-905, 2012.
DOI : 10.3390/biology1030895

URL : https://www.mdpi.com/2079-7737/1/3/895/pdf

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with bowtie 2, Nat Methods, vol.9, pp.357-366, 2012.
DOI : 10.1038/nmeth.1923

URL : http://europepmc.org/articles/pmc3322381?pdf=render

Y. Liao, G. K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, vol.30, pp.923-953, 2014.

A. Kozomara, S. Griffiths-jones, and . Mirbase, annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res, vol.42, pp.68-73, 2014.
DOI : 10.1093/nar/gkt1181

URL : https://academic.oup.com/nar/article-pdf/42/D1/D68/3618976/gkt1181.pdf

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, 2015.
DOI : 10.1093/nar/gkv007

URL : https://academic.oup.com/nar/article-pdf/43/7/e47/7207289/gkv007.pdf

E. Eden, R. Navon, I. Steinfeld, D. Lipson, Z. Yakhini et al., GOrilla : a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, vol.101, pp.530-536, 2009.

Y. Huang, A. Skwarek-maruszewska, K. Horré, E. Vandewyer, L. Wolfs et al., Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models, Sci Transl Med, vol.7, pp.309-164, 2015.

E. Salta, A. Sierksma, E. Vanden-eynden, D. Strooper, and B. , miR-132 loss derepresses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain, EMBO Mol Med, vol.8, pp.1005-1023, 2016.

A. N. Silahtaroglu, D. Nolting, L. Dyrskjøt, E. Berezikov, M. Møller et al., Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification, Nat Protoc, vol.2, pp.2520-2528, 2007.

A. S. Papadopoulou, L. Serneels, T. Achsel, W. Mandemakers, Z. Callaerts-vegh et al., Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice, Neurobiol Dis, vol.73, pp.275-88, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02086946

A. D. Chaudhuri, S. V. Yelamanchili, M. Marcondes, and H. S. Fox, Up-regulation of microRNA-142 in simian immunodeficiency virus encephalitis leads to repression of sirtuin1, FASEB J, vol.27, pp.3720-3729, 2013.

Z. Callaerts-vegh, S. Leo, B. Vermaercke, T. Meert, D. 'hooge et al., LPA 5 receptor plays a role in pain sensitivity, emotional exploration and reversal learning

, Genes Brain Behav, vol.11, 2012.

B. Bollen, N. Ramanantsoa, A. Naert, B. Matrot, O. Van-den-bergh et al., Emotional disorders in adult mice heterozygous for the transcription factor Phox2b, Physiol Behav, vol.141, pp.120-126, 2015.

S. Akkerman, A. Blokland, O. Reneerkens, N. P. Van-goethem, E. Bollen et al., Object recognition testing: methodological considerations on exploration and discrimination measures, Behav Brain Res, vol.232, pp.335-382, 2012.
DOI : 10.1016/j.bbr.2012.03.022

URL : http://dspace.ou.nl/bitstream/1820/4260/1/6%20Preprint%20Akkerman%2012%20Object%20recognition%20testing%20methodology.pdf

A. Naert, Z. Callaerts-vegh, D. 'hooge, and R. , Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in postweaning socially isolated mice, Brain Res Bull, vol.85, pp.354-62, 2011.

M. A. Busby, C. Stewart, C. A. Miller, K. R. Grzeda, and G. T. Marth, Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression, Bioinformatics, vol.29, pp.656-663, 2013.

P. Lau, K. Bossers, R. Janky, E. Salta, C. S. Frigerio et al., Alteration of the microRNA network during the progression of Alzheimer's disease, EMBO Mol Med, vol.5, pp.1613-1647, 2013.

W. J. Lukiw and P. N. Alexandrov, Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer's disease (AD) brain, Mol Neurobiol, vol.46, pp.11-20, 2012.

W. J. Lukiw, P. N. Alexandrov, Y. Zhao, J. M. Hill, and S. Bhattacharjee, Spreading of Alzheimer's disease inflammatory signaling through soluble micro-RNA, Neuroreport, vol.23, pp.621-627, 2012.

W. J. Lukiw, Y. Zhao, and J. G. Cui, An NF-kappaB-sensitive micro RNA-146amediated inflammatory circuit in Alzheimer disease and in stressed human brain cells, J Biol Chem, vol.283, pp.31315-31337, 2008.

P. Sethi and W. J. Lukiw, Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer's disease temporal lobe neocortex, Neuroscience Letters, vol.459, issue.2, pp.100-104, 2009.

W. Wang, Q. Huang, Y. Hu, A. J. Stromberg, and P. T. Nelson, Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter, Acta Neuropathol, vol.121, pp.193-205, 2011.

J. P. Cogswell, J. Ward, I. A. Taylor, M. Waters, Y. Shi et al., Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways, J Alzheimers Dis, vol.14, pp.27-41, 2008.

V. Agarwal, G. W. Bell, J. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, elife, vol.4, p.5005, 2015.

G. Liu and E. Abraham, MicroRNAs in immune response and macrophage polarization, Arterioscler Thromb Vasc Biol, vol.33, p.170, 2013.

X. Wang, D. Wang, J. Zhao, M. Qu, X. Zhou et al., The proline-rich domain and the microtubule binding domain of protein tau acting as RNA binding domains, Protein Pept Lett, vol.13, pp.679-85, 2006.

T. Kampers, P. Friedhoff, J. Biernat, E. M. Mandelkow, and E. Mandelkow, RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments, FEBS Lett, vol.399, pp.344-353, 1996.

T. Vanderweyde, D. J. Apicco, K. Youmans-kidder, P. Ash, C. Cook et al., Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity, Cell Rep, vol.15, pp.1455-66, 2016.

F. Fontana, K. Siva, and M. A. Denti, A network of RNA and protein interactions in Fronto temporal dementia, Front Mol Neurosci, vol.8, p.9, 2015.

Y. Y. Li, J. G. Cui, J. M. Hill, S. Bhattacharjee, Y. Zhao et al., Increased expression of miRNA-146a in Alzheimer's disease transgenic mouse models, Neurosci Lett, vol.487, pp.94-102, 2011.

E. D. Koval, C. Shaner, P. Zhang, X. Du-maine, K. Fischer et al., Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice, Hum Mol Genet, vol.22, pp.4127-4162, 2013.

A. Junker, M. Krumbholz, S. Eisele, H. Mohan, F. Augstein et al., MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47, Brain, vol.132, pp.3342-52, 2009.

F. Noorbakhsh, R. Ramachandran, N. Barsby, K. K. Ellestad, A. Leblanc et al., MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival, FASEB J, vol.24, pp.1799-812, 2010.

X. Wang, Y. Zhao, X. Zhang, H. Badie, Y. Zhou et al., Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome, Nat Med, vol.19, pp.473-80, 2013.

Y. Y. Li, P. N. Alexandrov, A. I. Pogue, Y. Zhao, S. Bhattacharjee et al., miRNA155 upregulation and complement factor H deficits in Down's syndrome, Neuroreport, vol.23, pp.168-73, 2012.

M. U. Ashhab, A. Omran, H. Kong, N. Gan, F. He et al., Expressions of tumor necrosis factor alpha and MicroRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy, J Mol Neurosci, vol.51, pp.950-958, 2013.

M. C. Thounaojam, K. Kundu, D. K. Kaushik, S. Swaroop, A. Mahadevan et al., MicroRNA 155 regulates Japanese encephalitis virus-induced inflammatory response by targeting Src homology 2-containing inositol phosphatase 1, J Virol, vol.88, pp.2979-2992, 2014.

O. Butovsky, M. P. Jedrychowski, R. Cialic, S. Krasemann, G. Murugaiyan et al., Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice, Annals of Neurology, vol.77, issue.1, pp.75-99, 2015.

E. Aronica, K. Fluiter, A. Iyer, E. Zurolo, J. Vreijling et al., Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy, Eur J Neurosci, vol.31, pp.1100-1107, 2010.

A. D. Thome, A. S. Harms, L. A. Volpicelli-daley, and D. G. Standaert, microRNA-155 regulates alpha-Synuclein-induced inflammatory responses in models of Parkinson disease, J Neurosci, vol.36, pp.2383-90, 2016.

J. R. Guedes, C. M. Custódia, R. J. Silva, L. P. De-almeida, M. De-lima et al., Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model, Hum Mol Genet, vol.23, pp.6286-301, 2014.

S. Rom, I. Rom, G. Passiatore, M. Pacifici, S. Radhakrishnan et al., CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells, FASEB J, vol.24, pp.2292-300, 2010.

K. D. Taganov, M. P. Boldin, K. Chang, and D. Baltimore, NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proc Natl Acad Sci, vol.103, pp.12481-12487, 2006.

J. Kluiver, A. Van-den-berg, D. De-jong, T. Blokzijl, G. Harms et al., Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma, Oncogene, vol.26, pp.3769-76, 2007.

R. Shih, C. Wang, Y. , and C. , NF-kappaB signaling pathways in neurological inflammation: a mini review, Front Mol Neurosci, vol.8, p.77, 2015.

J. Banzhaf-strathmann, B. E. May, S. Arzberger, T. Tahirovic, S. Kretzschmar et al., MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease, EMBO J, vol.33, pp.1667-80, 2014.

A. Zovoilis, H. Y. Agbemenyah, R. C. Agis-balboa, R. M. Stilling, D. Edbauer et al., microRNA-34c is a novel target to treat dementias, EMBO J, vol.30, pp.4299-308, 2011.

G. Wang, Y. Huang, L. Wang, Y. Zhang, J. Xu et al., MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer's disease, Sci Rep, vol.6, 2016.