C. L. Camp, M. J. Stuart, and A. J. Krych, Current concepts of articular cartilage restoration techniques in the knee, Sports Health, vol.6, issue.3, pp.265-273, 2014.

D. C. Flanigan, J. D. Harris, T. Q. Trinh, R. A. Siston, and R. H. Brophy, Prevalence of chondral defects in athletes' knees: a systematic review, Med. Sci. Sports Exerc, vol.42, issue.10, pp.1795-1801, 2010.

T. Minas, Autologous chondrocyte implantation for focal chondral defects of the knee, Clin. Orthop. Relat. Res, vol.391, pp.349-361, 2001.

M. Blagojevic, C. Jinks, A. Jeffery, and K. P. Jordan, Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis, Osteoarthritis Cartilage, vol.18, issue.1, pp.24-33, 2010.

K. Messner and W. Maletius, The long-term prognosis for severe damage to weightbearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes, Acta Orthop. Scand, vol.67, issue.2, pp.165-168, 1996.

T. M. Link, L. S. Steinbach, S. Ghosh, M. Ries, Y. Lu et al., Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings, Radiology, vol.226, issue.2, pp.373-381, 2003.

C. Ding, P. Garnero, F. Cicuttini, F. Scott, H. Cooley et al., Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown, Osteoarthritis Cartilage, vol.13, issue.3, pp.198-205, 2005.
DOI : 10.1016/j.joca.2004.11.007

URL : https://doi.org/10.1016/j.joca.2004.11.007

S. D. Gillogly, M. Voight, and T. Blackburn, Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation, J. Orthop. Sports Phys. Ther, vol.28, issue.4, pp.241-251, 1998.

M. L. Davies-tuck, A. E. Wluka, Y. Wang, A. J. Teichtahl, G. Jones et al., The natural history of cartilage defects in people with knee osteoarthritis, Osteoarthritis Cartilage, vol.16, issue.3, pp.337-342, 2008.

A. E. Wluka, C. Ding, G. Jones, and F. M. Cicuttini, The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study, Rheumatology, vol.44, issue.10, pp.1311-1316, 2005.

G. A. Homandberg, R. Meyers, and J. M. Williams, Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo, J. Rheumatol, vol.20, issue.8, pp.1378-1382, 1993.

G. A. Homandberg and F. Hui, Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage cultured with fibronectin fragments, Arch. Biochem. Biophys, vol.334, issue.2, pp.325-331, 1996.

J. A. Martin, T. Brown, A. Heiner, and J. A. Buckwalter, Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence, Biorheology, vol.41, issue.3-4, pp.479-491, 2004.

B. Kurz, A. K. Lemke, J. Fay, T. Pufe, A. J. Grodzinsky et al., Pathomechanisms of cartilage destruction by mechanical injury, Ann. Anat, vol.187, issue.5-6, pp.473-485, 2005.

D. L. Cecil, K. Johnson, J. Rediske, M. Lotz, A. M. Schmidt et al., Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products, J. Immunol, vol.175, issue.12, pp.8296-8302, 2005.

M. B. Goldring, M. Otero, D. A. Plumb, C. Dragomir, M. Favero et al., Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis, Eur. Cell. Mater, vol.21, pp.202-220, 2011.

G. A. Homandberg, C. Wen, and F. Hui, Cartilage damaging activities of fibronectin V, Graceffa et al. Biomaterials, vol.192, pp.199-225, 2019.

, Osteoarthritis Cartilage, vol.6, issue.4, pp.231-244, 1998.

C. Centers-for-disease, Prevention, National and state medical expenditures and lost earnings attributable to arthritis and other rheumatic conditions-United States, MMWR Morb. Mortal. Wkly. Rep, vol.56, issue.1, pp.4-7, 2003.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J. Med, vol.331, issue.14, pp.889-895, 1994.

J. Iwasa, L. Engebretsen, Y. Shima, and M. Ochi, Clinical application of scaffolds for cartilage tissue engineering, Knee Surg. Sports Traumatol. Arthrosc. : Off. J. ESSKA, vol.17, issue.6, pp.561-577, 2009.

P. Orth, A. Rey-rico, J. K. Venkatesan, H. Madry, and M. Cucchiarini, Current perspectives in stem cell research for knee cartilage repair, Stem Cell. Clon, vol.7, pp.1-17, 2014.

G. Knutsen, L. Engebretsen, T. C. Ludvigsen, J. O. Drogset, T. Grøntvedt et al., Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial, J. Bone Joint Surg. Am, vol.86, issue.3, pp.455-464, 2004.

P. Vavken and D. Samartzis, Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials, Osteoarthritis Cartilage, vol.18, issue.6, pp.857-863, 2010.

H. S. Vasiliadis, J. Wasiak, and G. Salanti, Autologous chondrocyte implantation for the treatment of cartilage lesions of the knee: a systematic review of randomized studies, Knee surgery, sports traumatology, arthroscopy, Off. J. ESSKA, vol.18, issue.12, pp.1645-1655, 2010.

T. Dehne, R. Schenk, C. Perka, L. Morawietz, A. Pruss et al., Gene expression profiling of primary human articular chondrocytes in high-density micromasses reveals patterns of recovery, maintenance, re-and dedifferentiation, Gene, vol.462, issue.1-2, pp.8-17, 2010.

S. Bauer, R. J. Khan, J. R. Ebert, W. B. Robertson, W. Breidahl et al., Knee joint preservation with combined neutralising high tibial osteotomy (HTO) and Matrix-induced Autologous Chondrocyte Implantation (MACI) in younger patients with medial knee osteoarthritis: a case series with prospective clinical and MRI follow-up over 5 years, Knee, vol.19, issue.4, pp.431-439, 2012.

G. Filardo, E. Kon, A. D. Martino, S. Patella, G. Altadonna et al., Second-generation arthroscopic autologous chondrocyte implantation for the treatment of degenerative cartilage lesions, Knee Surg. Sports Traumatol. Arthrosc. : Off. J. ESSKA, vol.20, issue.9, pp.1704-1713, 2012.

A. P. Hollander, S. C. Dickinson, T. J. Sims, P. Brun, R. Cortivo et al., Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees, Tissue Eng, vol.12, issue.7, pp.1787-1798, 2006.

S. J. Kim, C. H. Chang, D. S. Suh, H. K. Ha, and K. H. Suhl, Autologous chondrocyte implantation for rheumatoid arthritis of the knee: a case report, J. Med. Case Rep, vol.3, p.6619, 2009.

P. C. Kreuz, S. Muller, C. Ossendorf, C. Kaps, and C. Erggelet, Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results, Arthritis Res. Ther, vol.11, issue.2, p.33, 2009.

T. Kuroda, T. Matsumoto, Y. Mifune, T. Fukui, S. Kubo et al., Therapeutic strategy of third-generation autologous chondrocyte implantation for osteoarthritis, Ups, J. Med. Sci, vol.116, issue.2, pp.107-114, 2011.

T. Minas, Autologous chondrocyte implantation in the arthritic knee, Orthopedics, vol.26, issue.9, pp.945-947, 2003.

T. Minas, A. H. Gomoll, S. Solhpour, R. Rosenberger, C. Probst et al., Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis, Clin. Orthop. Relat. Res, vol.468, issue.1, pp.147-157, 2010.

C. Ossendorf, C. Kaps, P. C. Kreuz, G. R. Burmester, M. Sittinger et al., Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results, Arthritis Res. Ther, vol.9, issue.2, p.41, 2007.

V. V. Meretoja, R. L. Dahlin, S. Wright, F. K. Kasper, and A. G. Mikos, The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds, Biomaterials, vol.34, issue.17, pp.4266-4273, 2013.

D. Studer, C. Millan, E. Öztürk, K. Maniura-weber, and M. Zenobi-wong, Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells, Eur. Cell. Mater, vol.24, pp.118-135, 2012.

C. Scotti, B. Tonnarelli, A. Papadimitropoulos, A. Scherberich, S. Schaeren et al., Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.16, pp.7251-7256, 2010.

W. S. Toh, E. H. Lee, X. M. Guo, J. K. Chan, C. H. Yeow et al., Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells, Biomaterials, vol.31, issue.27, pp.6968-6980, 2010.

J. Lee, S. E. Taylor, P. Smeriglio, J. Lai, W. J. Maloney et al., Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells, Faseb. J, vol.29, issue.8, pp.3399-3410, 2015.

V. Graceffa, C. Vinatier, J. Guicheux, C. H. Evans, M. Stoddart et al., State of art and limitations in genetic engineering to induce stable chondrogenic phenotype, Biotechnol. Adv, vol.36, issue.7, pp.1855-1869, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01848216

R. Egli, E. Wernike, S. Grad, and R. Luginbühl, Physiological cartilage tissue engineering effect of oxygen and biomechanics, Int. Rev. Cell Mol. Biol, vol.289, pp.37-87, 2011.

D. Responte, J. Lee, J. Hu, and K. Athanasiou, Biomechanics-driven chondrogenesis: from embryo to adult, Faseb. J, vol.26, issue.9, pp.3614-3624, 2012.

L. Duan, B. Ma, Y. Liang, J. Chen, W. Zhu et al., Cytokine networking of chondrocyte dedifferentiation in vitro and its implications for cell-based cartilage therapy, Am. J. Transl. Res, vol.7, issue.2, pp.194-208, 2015.

K. Wescoe, R. Schugar, C. Chu, and B. Deasy, The role of the biochemical and biophysical environment in chondrogenic stem cell differentiation assays and cartilage tissue engineering, Cell Biochem. Biophys, vol.52, issue.2, pp.85-102, 2008.

A. Armiento, M. Stoddart, M. Alini, and D. Eglin, Biomaterials for articular cartilage tissue engineering: learning from biology, Acta Biomater, vol.65, pp.1-20, 2018.

J. Lam, S. Lu, F. Kasper, and A. Mikos, Strategies for controlled delivery of biologics for cartilage repair, Adv. Drug Deliv. Rev, vol.84, pp.123-134, 2015.

D. Cigognini, A. Lomas, P. Kumar, A. Satyam, A. English et al., Engineering in vitro microenvironments for cell based therapies and drug discovery, Drug Discov. Today, vol.18, pp.1099-1108, 2013.

D. Thomas, D. Gaspar, A. Sorushanova, G. Milcovich, K. Spanoudes et al., Scaffold and scaffold-free self-assembled systems in regenerative medicine, Biotechnol. Bioeng, vol.113, issue.6, pp.1155-1163, 2016.

S. Abbah, L. Delgado, A. Azeem, K. Fuller, N. Shologu et al., Harnessing hierarchical nano-and micro-fabrication technologies for musculoskeletal tissue engineering, Adv. Healthc. Mater, vol.4, issue.16, pp.2488-2499, 2015.

S. Guillaumin, I. Sallent, and D. Zeugolis, Biophysics rules the cell culture but has yet to reach the clinic: why is that?, J. Am. Acad. Orthop. Surg, vol.25, issue.7, pp.144-147, 2017.

M. Peroglio, D. Gaspar, D. I. Zeugolis, and M. Alini, Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans, J. Orthop. Res, vol.36, issue.1, pp.10-21, 2018.

D. H. Chai, E. C. Arner, D. W. Griggs, and A. J. Grodzinsky, Alphav and beta1 integrins regulate dynamic compression-induced proteoglycan synthesis in 3D gel culture by distinct complementary pathways, Osteoarthritis Cartilage, vol.18, issue.2, pp.249-256, 2010.

T. A. Karlsen, A. Shahdadfar, and J. E. Brinchmann, Human primary articular chondrocytes, chondroblasts-like cells, and dedifferentiated chondrocytes: differences in gene, microRNA, and protein expression and phenotype, Tissue Eng. Part C, vol.17, issue.2, pp.219-227, 2011.

A. J. Sophia-fox, A. Bedi, and S. A. Rodeo, The basic science of articular cartilage: structure, composition, and function, Sports Health, vol.1, issue.6, pp.461-468, 2009.

C. B. James and T. L. Uhl, A review of articular cartilage pathology and the use of glucosamine sulfate, J. Athl. Train, vol.36, issue.4, pp.413-419, 2001.

S. Fickert, J. Fiedler, and R. E. Brenner, Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers, Arthritis Res. Ther, vol.6, issue.5, pp.422-432, 2004.

C. A. Poole, Articular cartilage chondrons: form, function and failure, J. Anat, vol.191, issue.1, pp.1-13, 1997.

F. Guilak, L. G. Alexopoulos, M. L. Upton, I. Youn, J. B. Choi et al., The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage, Ann. N. Y. Acad. Sci, vol.1068, pp.498-512, 2006.

C. A. Poole, A. Matsuoka, and J. R. Schofield, Chondrons from articular cartilage. III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage, Arthritis Rheum, vol.34, issue.1, pp.22-35, 1991.

C. A. Mcdevitt, J. Marcelino, and L. Tucker, Interaction of intact type VI collagen with hyaluronan, FEBS Lett, vol.294, issue.3, pp.167-170, 1991.

V. Lee, L. Cao, Y. Zhang, C. Kiani, M. E. Adams et al., The roles of matrix molecules in mediating chondrocyte aggregation, attachment, and spreading, J. Cell. Biochem, vol.79, issue.2, pp.322-333, 2000.

W. Knudson and R. F. Loeser, CD44 and integrin matrix receptors participate in cartilage homeostasis, Cell. Mol. Life Sci, vol.59, issue.1, pp.36-44, 2002.

R. F. Loeser, S. Sadiev, L. Tan, and M. B. Goldring, Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen, Osteoarthritis Cartilage, vol.8, issue.2, pp.96-105, 2000.

E. E. Coates and J. P. Fisher, Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli, Ann. Biomed. Eng, vol.38, issue.11, pp.3371-3388, 2010.

G. P. Dowthwaite, J. C. Bishop, S. N. Redman, I. M. Khan, P. Rooney et al., The surface of articular cartilage contains a progenitor cell population, J. Cell Sci, vol.117, pp.889-897, 2004.

C. R. Fellows, R. Williams, I. R. Davies, K. Gohil, D. M. Baird et al., Characterisation of a divergent progenitor cell sub-populations in human osteoarthritic cartilage: the role of telomere erosion and replicative senescence, Sci. Rep, vol.7, p.41421, 2017.

J. Diaz-romero, D. Nesic, S. P. Grogan, P. Heini, and P. Mainil-varlet, Immunophenotypic changes of human articular chondrocytes during monolayer culture reflect bona fide dedifferentiation rather than amplification of progenitor cells, J. Cell. Physiol, vol.214, issue.1, pp.75-83, 2008.

T. Cheng, N. C. Maddox, A. W. Wong, R. Rahnama, and A. C. Kuo, Comparison of gene expression patterns in articular cartilage and dedifferentiated articular chondrocytes, J. Orthop. Res, vol.30, issue.2, pp.234-245, 2012.

P. Gomez-picos and B. F. Eames, On the evolutionary relationship between chondrocytes and osteoblasts, Front. Genet, vol.6, p.297, 2015.

G. Zhou, Q. Zheng, F. Engin, E. Munivez, Y. Chen et al., Dominance of SOX9 function over RUNX2 during skeletogenesis, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.50, pp.19004-19009, 2006.

V. Graceffa, Biomaterials, vol.192, pp.199-225, 2019.

B. De-crombrugghe, V. Lefebvre, and K. Nakashima, Regulatory mechanisms in the pathways of cartilage and bone formation, Curr. Opin. Cell Biol, vol.13, issue.6, pp.721-727, 2001.

E. Mariani, L. Pulsatelli, and A. Facchini, Signaling pathways in cartilage repair, Int. J. Mol. Sci, vol.15, issue.5, pp.8667-8698, 2014.

C. Vinatier, D. Mrugala, C. Jorgensen, J. Guicheux, and D. Noel, Cartilage engineering: a crucial combination of cells, biomaterials and biofactors, Trends Biotechnol, vol.27, issue.5, pp.307-314, 2009.

E. Kozhemyakina, A. B. Lassar, and E. Zelzer, A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation, Development, vol.142, issue.5, pp.817-831, 2015.

E. N. Blaney-davidson, D. F. Remst, E. L. Vitters, H. M. Van-beuningen, A. B. Blom et al., Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice, J. Immunol, vol.182, issue.12, pp.7937-7945, 2009.

P. M. Van-der-kraan, E. N. Blaney-davidson, W. B. Van-den, and . Berg, Bone morphogenetic proteins and articular cartilage: to serve and protect or a wolf in sheep clothing's?, Osteoarthritis Cartilage, vol.18, issue.6, pp.735-741, 2010.

K. Karamboulas, H. J. Dranse, and T. M. Underhill, Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFbeta signals, J. Cell Sci, vol.123, pp.2068-2076, 2010.

E. Augustyniak, T. Trzeciak, M. Richter, J. Kaczmarczyk, and W. Suchorska, The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration, Int. Orthop, vol.39, issue.5, pp.995-1003, 2015.

J. Q. Feng, L. Xing, J. H. Zhang, M. Zhao, D. Horn et al., NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro, J. Biol. Chem, vol.278, issue.31, pp.29130-29135, 2003.

F. J. Hughes, J. Collyer, M. Stanfield, and S. A. Goodman, The effects of bone morphogenetic protein-2,-4, and-6 on differentiation of rat osteoblast cells in vitro, Endocrinology, vol.136, issue.6, pp.2671-2677, 1995.

O. Nilsson, E. A. Parker, A. Hegde, M. Chau, K. M. Barnes et al., Gradients in bone morphogenetic protein-related gene expression across the growth plate, J. Endocrinol, vol.193, issue.1, pp.75-84, 2007.

D. W. Walsh, C. Godson, D. P. Brazil, and F. Martin, Extracellular BMP-antagonist regulation in development and disease: tied up in knots, Trends Cell Biol, vol.20, issue.5, pp.244-256, 2010.

S. Scarfi, Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair, World J. Stem Cell, vol.8, issue.1, pp.1-12, 2016.

M. M. Caron, P. J. Emans, D. A. Surtel, P. M. Van-der-kraan, L. W. Van-rhijn et al., BAPX-1/NKX-3.2 acts as a chondrocyte hypertrophy molecular switch in osteoarthritis, Arthritis Rheum, vol.67, issue.11, pp.2944-2956, 2015.

M. M. Caron, P. J. Emans, A. Cremers, D. A. Surtel, M. M. Coolsen et al., Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7, Osteoarthritis Cartilage, vol.21, issue.4, pp.604-613, 2013.

K. N. Kalpakci, W. E. Brown, J. C. Hu, and K. A. Athanasiou, Cartilage tissue engineering using dermis isolated adult stem cells: the use of hypoxia during expansion versus chondrogenic differentiation, PloS One, vol.9, issue.5, p.98570, 2014.

D. E. Anderson, B. D. Markway, D. Bond, H. E. Mccarthy, and B. Johnstone, Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity, Stem Cell Res. Ther, vol.7, issue.1, p.154, 2016.

C. L. Murphy, B. L. Thoms, R. J. Vaghjiani, J. E. Lafont, and H. , HIF-mediated articular chondrocyte function: prospects for cartilage repair, Arthritis Res. Ther, vol.11, issue.1, p.213, 2009.

H. H. Lee, C. C. Chang, M. J. Shieh, J. P. Wang, Y. T. Chen et al., Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect, Sci. Rep, vol.3, p.2683, 2013.

M. Barandun, L. D. Iselin, F. Santini, M. Pansini, C. Scotti et al., Generation and characterization of osteochondral grafts with human nasal chondrocytes, J. Orthop. Res, vol.33, issue.8, pp.1111-1119, 2015.

E. Malicev, N. Kregar-velikonja, A. Barlic, A. Alibegovic, and M. Drobnic, Comparison of articular and auricular cartilage as a cell source for the autologous chondrocyte implantation, J. Orthop. Res, vol.27, issue.7, pp.943-948, 2009.

W. Kafienah, M. Jakob, O. Demarteau, A. Frazer, M. D. Barker et al., Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes, Tissue Eng, vol.8, issue.5, pp.817-826, 2002.

A. G. Tay, J. Farhadi, R. Suetterlin, G. Pierer, M. Heberer et al., Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes, Tissue Eng, vol.10, issue.5-6, pp.762-770, 2004.

C. L. Murphy and J. M. Polak, Control of human articular chondrocyte differentiation by reduced oxygen tension, J. Cell. Physiol, vol.199, issue.3, pp.451-459, 2004.

D. G. Stokes, G. Liu, R. Dharmavaram, D. Hawkins, S. Piera-velazquez et al., Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors, Biochem. J, vol.360, issue.2, pp.461-470, 2001.

E. M. Darling and K. A. Athanasiou, Rapid phenotypic changes in passaged articular chondrocyte subpopulations, J. Orthop. Res, vol.23, issue.2, pp.425-432, 2005.

E. Hong and A. H. Reddi, Dedifferentiation and redifferentiation of articular chondrocytes from surface and middle zones: changes in microRNAs-221/-222,-140, and-143/145 expression, Tissue Eng, vol.19, issue.7-8, pp.1015-1022, 2013.

A. P. Hollander and P. V. Hatton, Biopolymer Methods in Tissue Engineering, 2003.

E. Grimaud, D. Heymann, and F. Redini, Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders, Cytokine Growth Factor Rev, vol.13, issue.3, pp.241-257, 2002.

M. K. Majumdar, E. Wang, and E. A. Morris, BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1, J. Cell. Physiol, vol.189, issue.3, pp.275-284, 2001.

A. Haaijman, E. H. Burger, S. W. Goei, L. Nelles, P. Ten-dijke et al., Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments, Growth Factors, vol.17, issue.3, pp.177-192, 2000.

B. Appel, J. Baumer, D. Eyrich, H. Sarhan, S. Toso et al., Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment, Osteoarthritis Cartilage, vol.17, issue.11, pp.1503-1512, 2009.

S. Lee, J. H. Kim, C. H. Jo, S. C. Seong, J. C. Lee et al., Effect of serum and growth factors on chondrogenic differentiation of synovium-derived stromal cells, Tissue Eng, vol.15, issue.11, pp.3401-3415, 2009.

R. F. Loeser and G. Shanker, Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro, Arthritis Rheum, vol.43, issue.7, pp.1552-1559, 2000.

Y. Miura, J. S. Fitzsimmons, C. N. Commisso, S. H. Gallay, and S. W. O'driscoll, Enhancement of periosteal chondrogenesis in vitro. Dose-response for transforming growth factor-beta 1 (TGF-beta 1), Clin. Orthop. Relat. Res, vol.301, pp.271-280, 1994.

R. L. Sah, A. C. Chen, A. J. Grodzinsky, and S. B. Trippel, Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants, Arch. Biochem. Biophys, vol.308, issue.1, pp.137-147, 1994.

K. H. Chua, B. S. Aminuddin, N. H. Fuzina, and B. H. Ruszymah, Insulin-transferrinselenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage, Eur. Cell. Mater, vol.9, pp.58-67, 2005.

M. Kino-oka, S. Yashiki, Y. Ota, Y. Mushiaki, K. Sugawara et al., Subculture of chondrocytes on a collagen Type I-coated substrate with suppressed cellular dedifferentiation, Tissue Eng, vol.11, issue.3-4, pp.597-608, 2005.

M. Shakibaei, Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study, Cell Biol. Int, vol.21, issue.2, pp.115-125, 1997.

M. Pei and F. He, Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation, J. Cell. Physiol, vol.227, issue.5, pp.2163-2174, 2012.

K. R. Brodkin, A. J. García, and M. E. Levenston, Chondrocyte phenotypes on different extracellular matrix monolayers, Biomaterials, vol.25, issue.28, pp.5929-5938, 2004.

M. Genzyme and C. , Carticel Product Label, Revision K, 2007.

Z. Cai, B. Pan, H. Jiang, and L. Zhang, Chondrogenesis of human adipose-derived stem cells by in vivo co-graft with auricular chondrocytes from microtia, Aesthet. Plast. Surg, vol.39, issue.3, pp.431-439, 2015.

Y. Jiang, Y. Cai, W. Zhang, Z. Yin, C. Hu et al., Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration, Stem cell transl. Med, vol.5, issue.6, pp.733-744, 2016.

M. Mumme, A. Steinitz, K. M. Nuss, K. Klein, S. Feliciano et al., Regenerative potential of tissue-engineered nasal chondrocytes in goat articular cartilage defects, Tissue Eng, vol.22, pp.1286-1295, 2016.

F. Halbwirth, E. Niculescu-morzsa, H. Zwickl, C. Bauer, and S. Nehrer, Mechanostimulation changes the catabolic phenotype of human dedifferentiated osteoarthritic chondrocytes, Knee Surg. Sports Traumatol. Arthrosc. : Off. J. ESSKA, vol.23, issue.1, pp.104-111, 2015.

T. Tallheden, J. Van-der-lee, C. Brantsing, J. Månsson, E. Sjögren-jansson et al., Human serum for culture of articular chondrocytes, Cell Transplant, vol.14, issue.7, pp.469-479, 2005.

X. Shao, N. A. Duncan, L. Lin, X. Fu, J. Zhang et al., Serum-free media for articular chondrocytes in vitro expansion, Chin. Med. J, vol.126, issue.13, pp.2523-2529, 2013.

S. T. Ho, Z. Yang, H. P. Hui, K. W. Oh, B. H. Choo et al., A serum free approach towards the conservation of chondrogenic phenotype during in vitro cell expansion, Growth Factors, vol.27, issue.5, pp.321-333, 2009.

M. P. Mojica-henshaw, P. Jacobson, J. Morris, L. Kelley, J. Pierce et al., Serum-converted platelet lysate can substitute for fetal bovine serum in human mesenchymal stromal cell cultures, Cytotherapy, vol.15, issue.12, pp.1458-1468, 2013.

J. Amrichová, T. ?paková, J. Rosocha, D. Harvanová, D. Ba?enková et al., Effect of PRP and PPP on proliferation and migration of human chondrocytes and synoviocytes in vitro, Cent. Eur. J. Biol, vol.9, issue.2, pp.139-148, 2014.

K. Akeda, H. S. An, M. Okuma, M. Attawia, K. Miyamoto et al., Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis, Osteoarthritis Cartilage, vol.14, issue.12, pp.1272-1280, 2006.

F. Hildner, M. J. Eder, K. Hofer, J. Aberl, H. Redl et al., Human platelet lysate successfully promotes proliferation and subsequent chondrogenic differentiation of adipose-derived stem cells: a comparison with articular chondrocytes, J. Tissue Eng. Regen. Med, vol.9, issue.7, pp.808-818, 2015.

V. Graceffa, Biomaterials, vol.192, pp.199-225, 2019.

Y. C. Choi, G. M. Morris, and L. Sokoloff, Effect of platelet lysate on growth and sulfated glycosaminoglycan synthesis in articular chondrocyte cultures, Arthritis Rheum, vol.23, issue.2, pp.220-224, 1980.

C. Kaps, A. Loch, A. Haisch, H. Smolian, G. R. Burmester et al., Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes, Med. Biol. Eng. Comput, vol.40, issue.4, pp.485-490, 2002.

F. M. Watt, Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture, J. Cell Sci, vol.89, pp.373-378, 1988.

N. Kaneshiro, M. Sato, M. Ishihara, G. Mitani, H. Sakai et al., Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes, Eur. Cell. Mater, vol.13, pp.87-92, 2007.

G. Mitani, M. Sato, J. I. Lee, N. Kaneshiro, M. Ishihara et al., The properties of bioengineered chondrocyte sheets for cartilage regeneration, BMC Biotechnol, vol.9, p.17, 2009.

J. Bonaventure, N. Kadhom, L. Cohen-solal, K. H. Ng, J. Bourguignon et al., Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads, Exp. cell Res, vol.212, issue.1, pp.97-104, 1994.

C. G. Spiteri, R. M. Pilliar, and R. A. , Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro, J. Biomed. Mater. Res, vol.78, issue.4, pp.676-683, 2006.

S. S. Silva, A. Motta, M. T. Rodrigues, A. F. Pinheiro, M. E. Gomes et al., Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies, Biomacromolecules, vol.9, issue.10, pp.2764-2774, 2008.

N. Mayer, S. Lopa, G. Talo, A. B. Lovati, M. Pasdeloup et al., Interstitial perfusion culture with specific soluble factors inhibits type I collagen production from human osteoarthritic chondrocytes in clinicalgrade collagen sponges, PloS One, vol.11, issue.9, p.161479, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02132052

J. Zhang, Z. Yang, C. Li, Y. Dou, Y. Li et al., Cells behave distinctly within sponges and hydrogels due to differences of internal structure, Tissue Eng, vol.19, pp.2166-2175, 2013.

S. Nuernberger, N. Cyran, C. Albrecht, H. Redl, V. Vecsei et al., The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts, Biomaterials, vol.32, issue.4, pp.1032-1040, 2011.

L. Zhang and M. Spector, Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering, Biomed. Mater, vol.4, issue.4, p.45012, 2009.

S. Nehrer, H. A. Breinan, A. Ramappa, S. Shortkroff, G. Young et al., Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro, J. Biomed. Mater. Res, vol.38, issue.2, pp.95-104, 1997.

Z. Izadifar, X. Chen, and W. Kulyk, Strategic design and fabrication of engineered scaffolds for articular cartilage repair, J. Funct. Biomater, vol.3, issue.4, pp.799-838, 2012.

M. A. Accardi, S. D. Mccullen, A. Callanan, S. Chung, P. M. Cann et al., Effects of fiber orientation on the frictional properties and damage of regenerative articular cartilage surfaces, Tissue Eng, vol.19, pp.2300-2310, 2013.

W. J. Li, Y. J. Jiang, and R. S. Tuan, Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size, Tissue Eng, vol.12, issue.7, pp.1775-1785, 2006.

T. Schneider, B. Kohl, T. Sauter, K. Kratz, A. Lendlein et al., Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes, Clin. Hemorheol. Microcirc, vol.52, issue.2-4, pp.325-336, 2012.

J. Maciulaitis, M. Deveikyte, S. Rekstyte, M. Bratchikov, A. Darinskas et al., Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography, Biofabrication, vol.7, issue.1, p.15015, 2015.

A. R. Tan and C. T. Hung, Concise review: mesenchymal stem cells for functional cartilage tissue engineering: taking cues from chondrocyte-based constructs, Stem cell transl. Med, vol.6, issue.4, pp.1295-1303, 2017.

J. C. Bray and E. W. Merrill, Poly(vinyl alcohol) hydrogels for synthetic articular cartilage material, J. Biomed. Mater. Res, vol.7, issue.5, pp.431-443, 1973.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi et al., Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials, J. Biomed. Mater. Res, vol.78, issue.1, pp.1-11, 2006.

P. D. Benya and J. D. Shaffer, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels, Cell, vol.30, issue.1, pp.215-224, 1982.

C. J. Hunter, J. K. Mouw, and M. E. Levenston, Dynamic compression of chondrocyteseeded fibrin gels: effects on matrix accumulation and mechanical stiffness, Osteoarthritis Cartilage, vol.12, issue.2, pp.117-130, 2004.

R. B. Jakobsen, A. Shahdadfar, F. P. Reinholt, and J. E. Brinchmann, Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue, Knee Surg. Sports Traumatol. Arthrosc. : Off. J. ESSKA, vol.18, issue.10, pp.1407-1416, 2010.

C. Vinatier, O. Gauthier, A. Fatimi, C. Merceron, M. Masson et al., An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects, Biotechnol. Bioeng, vol.102, issue.4, pp.1259-1267, 2009.

C. Vinatier, D. Magne, A. Moreau, O. Gauthier, O. Malard et al., Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel, J. Biomed. Mater. Res, vol.80, issue.1, pp.66-74, 2007.

P. Sanz-ramos, J. Duart, M. V. Rodríguez-goñi, M. Vicente-pascual, J. Dotor et al., Izal-Azcárate, Improved chondrogenic capacity of collagen hydrogelexpanded chondrocytes: in vitro and in vivo analyses, J. Bone Joint Surg. Am, vol.96, issue.13, pp.1109-1117, 2014.

J. Wu, K. Xue, H. Li, J. Sun, and K. Liu, Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering, PloS One, vol.8, issue.8, pp.71563-71563, 2013.

P. Uppanan, B. Thavornyutikarn, W. Kosorn, P. Kaewkong, and W. , Enhancement of chondrocyte proliferation, distribution, and functions within polycaprolactone scaffolds by surface treatments, J. Biomed. Mater. Res, vol.103, issue.7, pp.2322-2332, 2015.

M. Sha'ban, S. H. Kim, R. B. Idrus, and G. Khang, Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study, J. Orthop. Surg. Res, vol.3, issue.1, pp.17-17, 2008.

B. V. Sridhar, J. L. Brock, J. S. Silver, J. L. Leight, M. A. Randolph et al., Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition, Adv. Healthc. Mater, vol.4, issue.5, pp.702-713, 2015.

J. S. Park, D. G. Woo, B. K. Sun, H. Chung, S. J. Im et al., In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application, J. Contr. Release, vol.124, issue.1-2, pp.51-59, 2007.

N. Mohan and P. D. Nair, A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold, Tissue Eng, vol.16, issue.2, pp.373-384, 2010.

T. N. Snyder, K. Madhavan, M. Intrator, R. C. Dregalla, and D. Park, A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair, J. Biol. Eng, vol.8, issue.1, pp.10-10, 2014.

R. F. Loeser, Integrins and chondrocyte-matrix interactions in articular cartilage, Matrix Biol, vol.39, pp.11-16, 2014.

C. Vinatier, O. Gauthier, M. Masson, O. Malard, A. Moreau et al., Nasal chondrocytes and fibrin sealant for cartilage tissue engineering, J. Biomed. Mater. Res, vol.89, issue.1, pp.176-185, 2009.
DOI : 10.1002/jbm.a.31988

N. Tran-khanh, A. Chevrier, V. Lascau-coman, C. D. Hoemann, and M. D. Buschmann, Young adult chondrocytes proliferate rapidly and produce a cartilaginous tissue at the gel-media interface in agarose cultures, Connect. Tissue Res, vol.51, issue.3, pp.216-223, 2010.

H. J. Häuselmann, R. J. Fernandes, S. S. Mok, T. M. Schmid, J. A. Block et al., Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads, J. Cell Sci, vol.107, issue.1, pp.17-27, 1994.

F. Lemare, N. Steimberg, C. L. Griel, S. Demignot, and A. Monique, Dedifferentiated chondrocytes cultured in alginate beads : restoration of the differentiated phenotype and of the metabolic responses to Interleukin-1 b, J. Cell. Physiol, vol.313, pp.303-313, 1997.

N. Cheng, B. T. Estes, T. Young, and F. Guilak, Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix, Regen. Med, vol.6, issue.1, pp.81-93, 2011.

S. P. Grogan, X. Chen, S. Sovani, N. Taniguchi, C. W. Colwell et al., Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation, Tissue Eng, vol.20, issue.1-2, pp.264-274, 2014.

C. Vinatier, D. Magne, P. Weiss, C. Trojani, N. Rochet et al., A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, issue.33, pp.6643-6651, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00110465

J. Zhang, Y. Wu, T. Thote, E. H. Lee, Z. Ge et al., The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells, Biomed. Mater, vol.9, issue.3, p.35011, 2014.

T. Bhardwaj, R. M. Pilliar, M. D. Grynpas, and R. A. , Effect of material geometry on cartilagenous tissue formation in vitro, J. Biomed. Mater. Res, vol.57, issue.2, pp.190-199, 2001.

Q. Zhang, H. Lu, N. Kawazoe, and G. Chen, Pore size effect of collagen scaffolds on cartilage regeneration, Acta Biomater, vol.10, issue.5, pp.2005-2013, 2014.

S. M. Lien, L. Y. Ko, and T. J. Huang, Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering, Acta Biomater, vol.5, issue.2, pp.670-679, 2009.

S. J. Bryant and K. S. Anseth, Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels, J. Biomed. Mater. Res, vol.59, issue.1, pp.63-72, 2002.

H. Lee, C. Chang, M. Shieh, J. Wang, Y. Chen et al., Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect, Sci. Rep, vol.3, pp.2683-2683, 2013.

C. B. Foldager, A. B. Nielsen, S. Munir, M. Ulrich-vinther, K. Søballe et al., Combined 3D and hypoxic culture improves cartilage-specific gene expression in human chondrocytes, Acta Orthop, vol.82, issue.2, pp.234-240, 2011.

K. Schrobback, T. J. Klein, R. Crawford, Z. Upton, J. Malda et al., Effects of oxygen and culture system on in vitro propagation and redifferentiation of osteoarthritic human articular chondrocytes, Cell Tissue Res, vol.347, issue.3, pp.649-663, 2012.

B. D. Markway, H. Cho, and B. Johnstone, Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes, Arthritis Res. Ther, vol.15, issue.4, pp.92-92, 2013.

V. Tiitu, H. J. Pulkkinen, P. Valonen, O. Pulliainen, M. Kellomäki et al., Bioreactor improves the growth and viability of chondrocytes in the knitted poly-L,D-lactide scaffold, Biorheology, vol.45, issue.3-4, pp.539-546, 2008.

R. W. Forsey, R. Tare, R. O. Oreffo, and J. B. Chaudhuri, Perfusion bioreactor studies of chondrocyte growth in alginate-chitosan capsules, Appl. Biochem. Biotechnol, vol.59, issue.2, pp.142-152, 2012.

L. Yu, K. M. Ferlin, B. B. Nguyen, and J. P. Fisher, Tubular perfusion system for chondrocyte culture and superficial zone protein expression, J. Biomed. Mater

V. Graceffa, Biomaterials, vol.192, pp.199-225, 2019.

, Res, vol.103, issue.5, pp.1864-1874, 2015.

H. Patil, I. S. Chandel, A. K. Rastogi, and P. Srivastava, Studies on a novel bioreactor design for chondrocyte culture, Int. J. Tissue Eng, vol.2013, pp.7-7, 2013.

S. Guha-thakurta, M. Kraft, H. J. Viljoen, and A. Subramanian, Enhanced depth-independent chondrocyte proliferation and phenotype maintenance in an ultrasound bioreactor and an assessment of ultrasound dampening in the scaffold, Acta Biomater, vol.10, issue.11, pp.4798-4810, 2014.

S. Hsu, C. Kuo, S. W. Whu, C. Lin, and C. Tsai, The effect of ultrasound stimulation versus bioreactors on neocartilage formation in tissue engineering scaffolds seeded with human chondrocytes in vitro, Biomol. Eng, vol.23, issue.5, pp.259-264, 2006.

T. Yuan, L. Zhang, K. Li, H. Fan, Y. Fan et al., Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering, J. Biomed. Mater. Res. B Appl. Biomater, vol.102, issue.2, pp.337-344, 2014.

B. L. Wong, W. C. Bae, K. R. Gratz, and R. L. Sah, Shear deformation kinematics during cartilage articulation: effect of lubrication, degeneration, and stress relaxation, Mol. Cell Biomec, vol.5, issue.3, pp.197-206, 2008.

R. L. Smith, M. C. Trindade, T. Ikenoue, M. Mohtai, P. Das et al., Effects of shear stress on articular chondrocyte metabolism, Biorheology, vol.37, issue.1-2, pp.95-107, 2000.

B. D. Elder and K. A. Athanasiou, Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration, Tissue Eng. Part B, vol.15, issue.1, pp.43-53, 2009.

R. L. Smith, S. F. Rusk, B. E. Ellison, P. Wessells, K. Tsuchiya et al., In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure, J. Orthop. Res, vol.14, issue.1, pp.53-60, 1996.

B. D. Elder and K. A. Athanasiou, Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation, PloS One, vol.3, issue.6, pp.2341-2341, 2008.

S. Mizuno, T. Tateishi, T. Ushida, and J. Glowacki, Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture, J. Cell. Physiol, vol.193, issue.3, pp.319-327, 2002.

J. B. Fitzgerald, M. Jin, and A. J. Grodzinsky, Shear and compression differentially regulate clusters of functionally related temporal transcription patterns in cartilage tissue, J. Biol. Chem, vol.281, issue.34, pp.24095-24103, 2006.

J. D. Kisiday, M. Jin, M. A. Dimicco, B. Kurz, and A. J. Grodzinsky, Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds, J. Biomech, vol.37, issue.5, pp.595-604, 2004.

M. J. Stoddart, L. Ettinger, and H. J. Hauselmann, Enhanced matrix synthesis in de novo, scaffold free cartilage-like tissue subjected to compression and shear, Biotechnol. Bioeng, vol.95, issue.6, pp.1043-1051, 2006.

G. Vunjak-novakovic, I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky et al., Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage, J. Orthop. Res, vol.17, issue.1, pp.130-138, 1999.

S. Marlovits, B. Tichy, M. Truppe, D. Gruber, and W. Schlegel, Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor, Int. J. Artif. Organs, vol.26, issue.4, pp.319-330, 2003.

M. Jin, G. R. Emkey, P. Siparsky, S. B. Trippel, and A. J. Grodzinsky, Combined effects of dynamic tissue shear deformation and insulin-like growth factor I on chondrocyte biosynthesis in cartilage explants, Arch. Biochem. Biophys, vol.414, issue.2, pp.223-231, 2003.

D. A. Lee, T. Noguchi, M. M. Knight, L. O'donnell, G. Bentley et al., Response of chondrocyte subpopulations cultured within unloaded and loaded agarose, J. Orthop. Res, vol.16, issue.6, pp.726-733, 1998.

D. A. Lee, T. Noguchi, S. P. Frean, P. Lees, and D. L. Bader, The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs, Biorheology, vol.37, issue.1-2, pp.149-161, 2000.

E. J. Vanderploeg, C. G. Wilson, and M. E. Levenston, Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading, Osteoarthritis Cartilage, vol.16, issue.10, pp.1228-1236, 2008.

S. D. Waldman, D. C. Couto, M. D. Grynpas, R. M. Pilliar, and R. A. , Multi-axial mechanical stimulation of tissue engineered cartilage: review, Eur. Cell. Mater, vol.13, pp.66-73, 2007.

M. A. Wimmer, S. Grad, T. Kaup, M. Hänni, E. Schneider et al., Tribology approach to the engineering and study of articular cartilage, Tissue Eng, vol.10, issue.9, pp.1436-1445, 2004.

M. M. Pleumeekers, L. Nimeskern, W. L. Koevoet, N. Kops, R. M. Poublon et al., The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage, Eur. Cell. Mater, vol.27, pp.264-280, 2014.

A. Lohan, U. Marzahn, K. E. Sayed, A. Haisch, B. Kohl et al., In vitro and in vivo neo-cartilage formation by heterotopic chondrocytes seeded on PGA scaffolds, Histochem. Cell Biol, vol.136, issue.1, pp.57-69, 2011.

M. Ishibashia, A. Hikitab, Y. Fujiharac, T. Takatoc, and K. Hoshic, Human auricular chondrocytes with high proliferation rate show high production of cartilage matrix, Regen. Ther, vol.6, pp.21-28, 2017.

K. Pelttari, A. Winter, E. Steck, K. Goetzke, T. Hennig et al., Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice, Arthritis Rheum, vol.54, issue.10, pp.3254-3266, 2006.

Y. Peck, P. He, G. S. Chilla, C. L. Poh, and D. A. Wang, A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study, Sci. Rep, vol.5, p.16225, 2015.

J. J. Huang, S. R. Yang, I. M. Chu, E. M. Brey, H. Y. Hsiao et al., A comparative study of the chondrogenic potential between synthetic and natural scaffolds in an in vivo bioreactor, Sci. Technol. Adv. Mater, vol.14, issue.5, p.54403, 2013.

M. B. Hurtig, M. D. Buschmann, L. A. Fortier, C. D. Hoemann, E. B. Hunziker et al., Preclinical studies for cartilage repair: Recommendations from the international cartilage repair society, vol.2, pp.137-152, 2011.

M. Hurtig, S. Chubinskaya, J. Dickey, and D. Rueger, BMP-7 protects against progression of cartilage degeneration after impact injury, J. Orthop. Res, vol.27, issue.5, pp.602-611, 2009.

C. G. Pfeifer, M. B. Fisher, J. L. Carey, and R. L. Mauck, Impact of guidance documents on translational large animal studies of cartilage repair, Sci. Transl. Med, vol.7, issue.310, pp.310-319, 2015.

J. Wang, F. Zhang, W. P. Tsang, C. Wan, and C. Wu, Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering, Biomaterials, vol.120, pp.11-21, 2017.

N. Fu, J. Liao, S. Lin, K. Sun, T. Tian et al., PCL-PEG-PCL film promotes cartilage regeneration in vivo, Cell Prolif, vol.49, issue.6, pp.729-739, 2016.

X. Liu, X. Jin, and P. X. Ma, Nanofibrous hollow microspheres self-assembled from starshaped polymers as injectable cell carriers for knee repair, Nat. Mater, vol.10, issue.5, pp.398-406, 2011.

T. Wang, J. H. Lai, and F. Yang, Effects of hydrogel stiffness and extracellular compositions on modulating cartilage regeneration by mixed populations of stem cells and chondrocytes in vivo, Tissue Eng, vol.22, pp.1348-1356, 2016.

D. R. Costales, L. Junquera, E. Garcia-perez, S. Gomez-llames, M. Alvarezviejo et al., Ectopic bone formation during tissue-engineered cartilage repair using autologous chondrocytes and novel plasma-derived albumin scaffolds, J. Cranio-Maxillo-Fac. Surg, vol.44, issue.10, pp.1743-1749, 2016.

I. Martinez-zubiaurre, T. Annala, and M. Polacek, Behavior of human articular chondrocytes during in vivo culture in closed, permeable chambers, Cell Med, vol.4, issue.2, pp.99-107, 2012.

B. J. Ahern, J. Parvizi, R. Boston, and T. P. Schaer, Preclinical animal models in single site cartilage defect testing: a systematic review, Osteoarthritis Cartilage, vol.17, issue.6, pp.705-713, 2009.

F. Dell'accio, C. D. Bari, and F. P. Luyten, Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo, Arthritis Rheum, vol.44, issue.7, pp.1608-1619, 2001.

D. B. Saris, J. Vanlauwe, J. Victor, K. F. Almqvist, R. Verdonk et al., Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture, Am. J. Sports Med, vol.37, issue.1, pp.10-19, 2009.

D. B. Saris, J. Vanlauwe, J. Victor, M. Haspl, M. Bohnsack et al., Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture, Am. J. Sports Med, vol.36, issue.2, pp.235-246, 2008.

M. Mumme, A. Barbero, S. Miot, A. Wixmerten, S. Feliciano et al., Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial, Lancet, vol.388, pp.1985-1994, 2016.

S. Nehrer, C. Chiari, S. Domayer, H. Barkay, and A. Yayon, Results of chondrocyte implantation with a fibrin-hyaluronan matrix: a preliminary study, Clin. Orthop. Relat. Res, vol.466, issue.8, pp.1849-1855, 2008.

P. C. Kreuz, S. Muller, U. Freymann, C. Erggelet, P. Niemeyer et al., Repair of focal cartilage defects with scaffold-assisted autologous chondrocyte grafts: clinical and biomechanical results 48 months after transplantation, Am. J. Sports Med, vol.39, issue.8, pp.1697-1705, 2011.

D. C. Crawford, T. M. Deberardino, and R. J. Williams, NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years, J. Bone Joint Surg. Am, vol.94, issue.11, pp.979-989, 2012.

S. Nehrer, R. Dorotka, S. Domayer, D. Stelzeneder, and R. Kotz, Treatment of fullthickness chondral defects with hyalograft C in the knee: a prospective clinical case series with 2 to 7 years' follow-up, Am. J. Sports Med, vol.37, issue.1, pp.81-87, 2009.

Y. Sakaguchi, I. Sekiya, K. Yagishita, and T. Muneta, Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source, Arthritis Rheum, vol.52, issue.8, pp.2521-2529, 2005.

J. Garcia, C. Mennan, H. S. Mccarthy, S. Roberts, J. B. Richardson et al., Chondrogenic potency analyses of donor-matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat, Stem Cell. Int, vol.2016, p.6969726, 2016.

W. D. Lee, M. B. Hurtig, R. M. Pilliar, W. L. Stanford, and R. A. , Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells, Osteoarthritis Cartilage, vol.23, issue.8, pp.1307-1315, 2015.

M. K. Murphy, D. J. Huey, J. C. Hu, and K. A. Athanasiou, TGF-?1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells, Stem Cell, vol.33, issue.3, pp.762-773, 2015.

J. I. Huang, N. Kazmi, M. M. Durbhakula, T. M. Hering, J. U. Yoo et al., Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison, J. Orthop. Res, vol.23, issue.6, pp.1383-1389, 2005.

V. Graceffa, Biomaterials, vol.192, pp.199-225, 2019.

X. Zhang, N. Ziran, J. J. Goater, E. M. Schwarz, J. E. Puzas et al., Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: TGF-beta delays hypertrophy and PGE2 inhibits terminal differentiation, Bone, vol.34, issue.5, pp.809-817, 2004.

M. C. Ronzière, E. Perrier, F. Mallein-gerin, and A. Freyria, Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells, Bio Med. Mater. Eng, vol.20, issue.3, pp.145-158, 2010.

N. Shintani and E. B. Hunziker, Differential effects of dexamethasone on the chondrogenesis of mesenchymal stromal cells: influence of microenvironment, tissue origin and growth factor, Eur. Cell. Mater, vol.22, pp.302-319, 2011.

E. M. Florine, R. E. Miller, R. M. Porter, C. H. Evans, B. Kurz et al., Effects of dexamethasone on mesenchymal stromal cell chondrogenesis and aggrecanase activity: comparison of agarose and self-assembling peptide scaffolds, Cartilage, vol.4, issue.1, pp.63-74, 2013.

R. Narcisi, O. H. Arikan, J. Lehmann, D. Ten-berge, and G. J. Van-osch, Differential effects of small molecule WNT agonists on the multilineage differentiation capacity of human mesenchymal stem cells, Tissue Eng, vol.22, pp.1264-1273, 2016.

R. Narcisi, M. A. Cleary, P. A. Brama, M. J. Hoogduijn, N. Tuysuz et al., Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation, Stem cell Rep, vol.4, issue.3, pp.459-472, 2015.

S. Wang, Q. Chang, X. Kong, and C. Wang, The chondrogenic induction potential for bone marrow-derived stem cells between autologous platelet-rich plasma and common chondrogenic induction agents: a preliminary comparative study, Stem Cell. Int, pp.589124-589124, 2015.

F. Barry, R. E. Boynton, B. Liu, and J. M. Murphy, Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components, Exp. cell Res, vol.268, issue.2, pp.189-200, 2001.

M. B. Mueller and R. S. Tuan, Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells, Arthritis Rheum, vol.58, issue.5, pp.1377-1388, 2008.

B. Cao, Z. Li, R. Peng, and J. Ding, Effects of cell-cell contact and oxygen tension on chondrogenic differentiation of stem cells, Biomaterials, vol.64, pp.21-32, 2015.

B. Sridharan, S. M. Lin, A. T. Hwu, A. D. Laflin, and M. S. Detamore, Stem cells in aggregate form to enhance chondrogenesis in hydrogels, PloS One, vol.10, issue.12, p.141479, 2015.

L. Zhang, P. Su, C. Xu, J. Yang, W. Yu et al., Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems, Biotechnol. Lett, vol.32, issue.9, pp.1339-1346, 2010.

F. Yano, H. Hojo, S. Ohba, T. Saito, M. Honnami et al., Cell-sheet technology combined with a thienoindazole derivative small compound TD-198946 for cartilage regeneration, Biomaterials, vol.34, issue.22, pp.5581-5587, 2013.

M. Itokazu, S. Wakitani, H. Mera, Y. Tamamura, Y. Sato et al., Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair: a preclinical study, Cartilage, vol.7, issue.4, pp.361-372, 2016.

A. D. Murdoch, L. M. Grady, M. P. Ablett, T. Katopodi, R. S. Meadows et al., Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage, Stem Cell, vol.25, issue.11, pp.2786-2796, 2007.

L. D. Solorio, E. L. Vieregge, C. D. Dhami, P. N. Dang, and E. Alsberg, Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-beta1, J. Contr. Release, vol.158, issue.2, pp.224-232, 2012.
DOI : 10.1016/j.jconrel.2011.11.003

URL : http://europepmc.org/articles/pmc3294133?pdf=render

H. Zhou, G. Rivas, and A. Minton, Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences, Annu. Rev. Biophys, vol.37, pp.375-397, 2008.
DOI : 10.1146/annurev.biophys.37.032807.125817

URL : http://europepmc.org/articles/pmc2826134?pdf=render

M. Mourão, J. Hakim, and S. Schnell, Connecting the dots: the effects of macromolecular crowding on cell physiology, Biophys. J, vol.107, issue.12, pp.2761-2766, 2014.

A. Minton, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, J. Biol. Chem, vol.276, issue.14, pp.10577-10580, 2001.

A. Christiansen, Q. Wang, M. Cheung, and P. Wittung-stafshede, Effects of macromolecular crowding agents on protein folding in vitro and in silico, Biophys. Rev, vol.5, issue.2, pp.137-145, 2013.

G. Rivas and A. Minton, Macromolecular crowding in vitro, in vivo, and in between, Trends Biochem. Sci, vol.41, issue.11, pp.970-981, 2016.

V. Magno, J. Friedrichs, H. Weber, M. Prewitz, M. Tsurkan et al., Macromolecular crowding for tailoring tissue-derived fibrillated matrices, Acta Biomater, vol.55, pp.109-119, 2017.

A. Satyam, P. Kumar, D. Cigognini, A. Pandit, D. Zeugolis et al., but not too low, oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human dermal fibroblast culture, Acta Biomater, vol.44, pp.221-231, 2016.

P. Kumar, A. Satyam, X. Fan, E. Collin, Y. Rochev et al., Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies, Sci. Rep, vol.5, p.8729, 2015.

P. Kumar, A. Satyam, X. Fan, Y. Rochev, B. Rodriguez et al., Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders, Tissue Eng. Part C, vol.21, issue.7, pp.660-670, 2015.

A. Satyam, P. Kumar, X. Fan, A. Gorelov, Y. Rochev et al., Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine, Adv. Mater, vol.26, issue.19, pp.3024-3034, 2014.

P. Kumar, A. Satyam, D. Cigognini, A. Pandit, and D. I. Zeugolis, Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture, J. Tissue Eng. Regen. Med, vol.12, issue.1, pp.6-18, 2018.

M. Lee, A. Goralczyk, R. Kriszt, X. Ang, C. Badowski et al., ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs, Sci. Rep, vol.6, p.21173, 2016.

M. Prewitz, A. Stißel, J. Friedrichs, N. Träber, S. Vogler et al., Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding, Biomaterials, vol.73, pp.60-69, 2015.

X. Ang, M. Lee, A. Blocki, C. Chen, L. Ong et al., Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment, Tissue Eng, vol.20, issue.5-6, pp.966-981, 2014.

A. Zeiger, F. Loe, R. Li, M. Raghunath, K. Van et al., Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior, PloS One, vol.7, issue.5, p.37904, 2012.

B. Chen, B. Wang, W. Zhang, G. Zhou, Y. Cao et al., Macromolecular crowding effect on cartilaginous matrix production: a comparison of two-dimensional and three-dimensional models, Tissue Eng. Part C, vol.19, issue.8, pp.586-595, 2013.

M. Patrikoski, M. Lee, L. Mäkinen, X. Ang, B. Mannerström et al., Effects of macromolecular crowding on human adipose stem cell culture in fetal bovine serum, human serum, and defined xeno-free/serum-free conditions, Stem Cell, p.6909163, 2017.

D. Cigognini, D. Gaspar, P. Kumar, A. Satyam, S. Alagesan et al., Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture-a step closer to physiologically relevant in vitro organogenesis, Sci. Rep, vol.6, p.30746, 2016.

C. Chung and J. A. Burdick, Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis, Tissue Eng, vol.15, issue.2, pp.243-254, 2009.

T. D. Bornes, N. M. Jomha, A. Mulet-sierra, and A. B. Adesida, Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds, Stem Cell Res. Ther, vol.6, issue.1, pp.84-84, 2015.

A. He, L. Liu, X. Luo, Y. Liu, Y. Liu et al., Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model, Sci. Rep, vol.7, p.40489, 2017.

Z. Pan, P. Duan, X. Liu, H. Wang, L. Cao et al., Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering, Regen. Biomater, vol.2, issue.1, pp.9-19, 2015.

K. Ma, A. L. Titan, M. Stafford, C. H. Zheng, and M. E. Levenston, Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels, Acta Biomater, vol.8, issue.10, pp.3754-3764, 2012.

A. J. Sutherland, E. C. Beck, S. C. Dennis, G. L. Converse, R. A. Hopkins et al., Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering, PloS One, vol.10, issue.5, pp.121966-0121966, 2015.

Q. Yang, J. Peng, Q. Guo, J. Huang, L. Zhang et al., A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrowderived mesenchymal stem cells, Biomaterials, vol.29, issue.15, pp.2378-2387, 2008.

S. Kwon, T. Lee, J. Park, J. Hwang, M. Jin et al., Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices, Tissue Eng, vol.19, issue.1-2, pp.49-58, 2013.

H. Yin, Y. Wang, Z. Sun, X. Sun, Y. Xu et al., Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles, Acta Biomater, vol.33, pp.96-109, 2016.

R. Cai, T. Nakamoto, N. Kawazoe, and G. Chen, Influence of stepwise chondrogenesismimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells, Biomaterials, vol.52, pp.199-207, 2015.

C. Tang, C. Jin, Y. Xu, B. Wei, and L. Wang, Chondrogenic differentiation could Be induced by autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds without exogenous growth factor, Tissue Eng, vol.22, issue.3-4, pp.222-232, 2016.

A. Matsiko, J. P. Gleeson, and F. J. O'brien, Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition, Tissue Eng, vol.21, issue.3-4, pp.486-497, 2015.

Y. N. Wu, J. B. Law, A. Y. He, H. Y. Low, J. H. Hui et al., Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation, Nanomed. Nanotechnol. Biol. Med, vol.10, issue.7, pp.1507-1516, 2014.

J. E. Phillips, T. A. Petrie, F. P. Creighton, and A. J. Garcia, Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries, Acta Biomater, vol.6, issue.1, pp.12-20, 2010.

J. M. Curran, R. Chen, and J. A. Hunt, The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate, Biomaterials, vol.27, issue.27, pp.4783-4793, 2006.

A. Sgambato, L. Russo, M. Montesi, S. Panseri, M. Marcacci et al., Different sialoside epitopes on collagen film surfaces direct mesenchymal stem cell fate, ACS Appl. Mater. Interfaces, vol.8, issue.24, 2016.

K. Miyanishi, M. C. Trindade, D. P. Lindsey, G. S. Beaupré, D. R. Carter et al., Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro, Tissue Eng, vol.12, issue.6, pp.1419-1428, 2006.

D. R. Wagner, D. P. Lindsey, K. W. Li, P. Tummala, S. E. Chandran et al., Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium, Ann. Biomed. Eng, vol.36, issue.5, pp.813-820, 2008.

A. H. Huang, M. J. Farrell, M. Kim, and R. L. Mauck, Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel, Eur. Cell. Mater, vol.19, pp.72-85, 2010.

O. Schätti, S. Grad, J. Goldhahn, G. Salzmann, Z. Li et al., A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells, Eur. Cell. Mater, vol.22, pp.214-225, 2011.

J. D. Kisiday, D. D. Frisbie, C. W. Mcilwraith, and A. J. Grodzinsky, Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines, Tissue Eng, vol.15, issue.10, pp.2817-2824, 2009.

Z. Li, S. Yao, M. Alini, and M. J. Stoddart, Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress, Tissue Eng, vol.16, issue.2, pp.575-584, 2010.

O. F. Gardner, N. Fahy, M. Alini, and M. J. Stoddart, Joint mimicking mechanical load activates TGF?1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells, J. Tissue Eng. Regen. Med, vol.11, issue.9, pp.2663-2666, 2017.

Z. Li, L. Kupcsik, S. J. Yao, M. Alini, and M. J. Stoddart, Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway, J. Cell Mol. Med, vol.14, issue.6A, pp.1338-1346, 2010.

O. F. Gardner, N. Fahy, M. Alini, and M. J. Stoddart, Differences in human mesenchymal stem cell secretomes during chondrogenic induction, Eur. Cell. Mater, vol.31, pp.221-235, 2016.

R. Ba, J. Wei, M. Li, X. Cheng, Y. Zhao et al., Cell-bricks based injectable niche guided persistent ectopic chondrogenesis of bone marrow-derived mesenchymal stem cells and enabled nasal augmentation, Stem Cell Res. Ther, vol.6, issue.1, pp.16-16, 2015.

Y. Morita, S. Yamamoto, and Y. Ju, Development of a new co-culture system, the "separable-close co-culture system," to enhance stem-cell-to-chondrocyte differentiation, Biotechnol. Lett, vol.37, issue.9, pp.1911-1918, 2015.

E. J. Levorson, M. Santoro, F. K. Kasper, and A. G. Mikos, Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs, Acta Biomater, vol.10, issue.5, pp.1824-1835, 2014.

S. Giovannini, J. Diaz-romero, T. Aigner, P. Heini, P. Mainil-varlet et al., Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro, Eur. Cell. Mater, vol.20, pp.245-259, 2010.

T. S. De-windt, D. B. Saris, I. C. Slaper-cortenbach, M. H. Van-rijen, D. Gawlitta et al., Direct cell-cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cellmediated chondrogenesis, Tissue Eng, vol.21, pp.2536-2547, 2015.

E. Steck, J. Fischer, H. Lorenz, T. Gotterbarm, M. Jung et al., Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage, Stem Cell. Dev, vol.18, issue.7, pp.969-978, 2009.

F. Shapiro, S. Koide, and M. J. Glimcher, Cell origin and differentiation in the repair of full-thickness defects of articular cartilage, J. Bone Joint Surg. Am, vol.75, issue.4, pp.532-553, 1993.

Q. Li, J. Tang, R. Wang, C. Bei, L. Xin et al., Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues, Artif. Cells Blood Substit. Immobil. Biotechno, vol.39, issue.1, pp.31-38, 2011.

X. Wang, Y. Li, R. Han, C. He, G. Wang et al., Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-beta 3 gene promoted pig cartilage defect repair, PloS One, vol.9, issue.12, p.116061, 2014.

Y. Pei, J. J. Fan, X. Q. Zhang, Z. Y. Zhang, and M. Yu, Repairing the osteochondral defect in goat with the tissue-engineered osteochondral graft preconstructed in a doublechamber stirring bioreactor, BioMed Res. Int, p.219203, 2014.

J. Ding, B. Chen, T. Lv, X. Liu, X. Fu et al., Bone marrow mesenchymal stem cell-based engineered cartilage ameliorates polyglycolic acid/polylactic acid scaffold induced inflammation through M2 polarization of macrophages in a pig model, Stem cell transl. Med, vol.5, issue.8, pp.1079-1089, 2016.

V. Barron, M. Neary, K. M. Mohamed, S. Ansboro, G. Shaw et al., Evaluation of the early in vivo response of a functionally graded macroporous scaffold in an osteochondral defect in a rabbit model, Ann. Biomed. Eng, vol.44, issue.5, pp.1832-1844, 2016.

B. Wei, Q. Yao, Y. Guo, F. Mao, S. Liu et al., Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering, J. Biomater. Appl, vol.30, issue.2, pp.160-170, 2015.

F. Han, F. Zhou, X. Yang, J. Zhao, Y. Zhao et al., A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-beta1 and BMP-2 for regeneration of cartilage-bone interface, J. Biomed. Mater. Res. B Appl. Biomater, vol.103, issue.7, pp.1344-1353, 2015.

L. Zheng, H. S. Fan, J. Sun, X. N. Chen, G. Wang et al., Chondrogenic differentiation of mesenchymal stem cells induced by collagenbased hydrogel: an in vivo study, J. Biomed. Mater. Res, vol.93, issue.2, pp.783-792, 2010.

L. Zheng, J. Yang, H. Fan, and X. Zhang, Material-induced chondrogenic differentiation of mesenchymal stem cells is material-dependent, Exp. Therap. Med, vol.7, issue.5, pp.1147-1150, 2014.

P. K. Gupta, A. K. Das, A. Chullikana, and A. S. Majumdar, Mesenchymal stem cells for cartilage repair in osteoarthritis, Stem Cell Res. Ther, vol.3, issue.4, p.25, 2012.

K. L. Blanc, C. Tammik, K. Rosendahl, E. Zetterberg, and O. Ringden, HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells, Exp. Hematol, vol.31, issue.10, pp.890-896, 2003.

C. Schlundt, T. E. Khassawna, A. Serra, A. Dienelt, S. Wendler et al., Macrophages in bone fracture healing: their essential role in endochondral ossification, vol.106, pp.78-89, 2018.

H. Nejadnik, J. H. Hui, E. P. Feng-choong, B. Tai, and E. H. Lee, Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study, Am. J. Sports Med, vol.38, issue.6, pp.1110-1116, 2010.

A. M. Haleem, A. A. Singergy, D. Sabry, H. M. Atta, L. A. Rashed et al., The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results, Cartilage, vol.1, issue.4, pp.253-261, 2010.

R. Kuroda, K. Ishida, T. Matsumoto, T. Akisue, H. Fujioka et al., Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells, Osteoarthritis Cartilage, vol.15, issue.2, pp.226-231, 2007.

C. Kasemkijwattana, S. Hongeng, S. Kesprayura, V. Rungsinaporn, K. Chaipinyo et al., Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report, J. Med. Assoc. Thai, vol.94, issue.3, pp.395-400, 2011.

S. Wakitani, M. Nawata, K. Tensho, T. Okabe, H. Machida et al., Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees, J. Tissue Eng. Regen. Med, vol.1, issue.1, pp.74-79, 2007.

C. J. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman et al., Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells, Pain Physician, vol.11, issue.3, pp.343-353, 2008.

F. Davatchi, B. Sadeghi, M. Abdollahi, B. Mohyeddin, and . Nikbin, Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients, Int. J. Rheum. Dis, 2015.

N. Kang, X. Liu, Y. Guan, J. Wang, F. Gong et al., Effects of co-culturing BMSCs and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage, Biomaterials, vol.33, issue.18, pp.4535-4544, 2012.

G. I. Im, N. H. Jung, and S. K. Tae, Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors, Tissue Eng, vol.12, issue.3, pp.527-536, 2006.

C. Tang, C. Jin, Y. Xu, B. Wei, and L. Wang, Chondrogenic differentiation could be induced by autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds without exogenous growth factors, Tissue Eng, vol.22, issue.3-4, pp.222-232, 2016.

D. Studer, E. Cavalli, F. A. Formica, G. A. Kuhn, G. Salzmann et al., Human chondroprogenitors in alginate-collagen hybrid scaffolds produce stable cartilage in vivo, J. Tissue Eng. Regen. Med, vol.11, issue.11, pp.3014-3026, 2017.

L. Peng, Z. Jia, X. Yin, X. Zhang, Y. Liu et al., Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue, Stem Cell. Dev, vol.17, issue.4, pp.761-773, 2008.

S. L. Francis, S. Duchi, C. Onofrillo, C. D. Bella, and P. F. Choong, Adipose-derived mesenchymal stem cells in the use of cartilage tissue engineering: the need for a rapid isolation procedure, Stem Cell. Int, vol.2018, p.8947548, 2018.

P. Tangchitphisut, N. Srikaew, S. Numhom, A. Tangprasittipap, P. Woratanarat et al., Infrapatellar fat pad: an alternative source of adipose-derived mesenchymal stem cells, Arthritis, vol.2016, p.4019873, 2016.

B. O. Diekman, C. R. Rowland, D. P. Lennon, A. I. Caplan, and F. Guilak, Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix, Tissue Eng, vol.16, issue.2, pp.523-533, 2010.

A. Winter, S. Breit, D. Parsch, K. Benz, E. Steck et al., Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissuederived stromal cells, Arthritis Rheum, vol.48, issue.2, pp.418-429, 2003.

H. Afizah, Z. Yang, J. H. Hui, H. Ouyang, and E. Lee, A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors, Tissue Eng, vol.13, issue.4, pp.659-666, 2007.

D. W. Wang, B. Fermor, J. M. Gimble, H. A. Awad, and F. Guilak, Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells, J. Cell. Physiol, vol.204, issue.1, pp.184-191, 2005.

M. S. Hosseini, M. Tafazzoli-shadpour, N. Haghighipour, N. Aghdami, and A. Goodarzi, The synergistic effects of shear stress and cyclic hydrostatic pressure modulate chondrogenic induction of human mesenchymal stem cells, Int. J. Artif. Organs, vol.38, issue.10, pp.557-564, 2015.

M. A. Vidal, S. O. Robinson, M. J. Lopez, D. B. Paulsen, O. Borkhsenious et al., Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow, Vet. Surg. : Vysokomol. Soedin, vol.37, issue.8, pp.713-724, 2008.

C. Y. Li, X. Y. Wu, J. B. Tong, X. X. Yang, J. L. Zhao et al., Biomaterials, vol.192, pp.199-225, 2019.

, Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy, Stem Cell Res. Ther, vol.6, p.55, 2015.

S. Lopa, A. Colombini, D. Stanco, L. De-girolamo, V. Sansone et al., Donormatched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment, Eur. Cell. Mater, vol.27, pp.298-311, 2014.

T. Vinardell, C. T. Buckley, S. D. Thorpe, and D. J. Kelly, Composition-function relations of cartilaginous tissues engineered from chondrocytes and mesenchymal stem cells isolated from bone marrow and infrapatellar fat pad, J. Tissue Eng. Regen. Med, vol.5, issue.9, pp.673-683, 2011.

T. Vinardell, E. J. Sheehy, C. T. Buckley, and D. J. Kelly, A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources, Tissue Eng, vol.18, pp.1161-1170, 2012.

A. T. Mehlhorn, P. Niemeyer, K. Kaschte, L. Muller, G. Finkenzeller et al., Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells, Cell Prolif, vol.40, issue.6, pp.809-823, 2007.

C. Merceron, S. Portron, C. Vignes-colombeix, E. Rederstorff, M. Masson et al., Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin: potential application to cartilage regenerative medicine, Stem Cell, vol.30, issue.3, pp.471-480, 2012.

H. A. Awad, Y. C. Halvorsen, J. M. Gimble, and F. Guilak, Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells, Tissue Eng, vol.9, issue.6, pp.1301-1312, 2003.

M. Knippenberg, M. N. Helder, B. Zandieh-doulabi, P. I. Wuisman, and J. Kleinnulend, Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells, Biochem. Biophys. Res. Commun, vol.342, issue.3, pp.902-908, 2006.

F. Josh, K. Kobe, M. Tobita, R. Tanaka, K. Suzuki et al., Accelerated and safe proliferation of human adipose-derived stem cells in medium supplemented with human serum, J. Nippon Med. Sch, vol.79, issue.6, pp.444-452, 2012.

P. A. Zuk, M. Zhu, P. Ashjian, D. A. De-ugarte, J. I. Huang et al., Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell, vol.13, issue.12, pp.4279-4295, 2002.

P. N. Dang, L. D. Solorio, and E. Alsberg, Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery, Tissue Eng, vol.20, pp.3163-3175, 2014.

H. H. Yoon, S. H. Bhang, J. Shin, J. Shin, and B. Kim, Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells, Tissue Eng, vol.18, pp.1949-1956, 2012.

C. Merceron, S. Portron, M. Masson, J. Lesoeur, B. H. Fellah et al., The effect of two-and three-dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel, Cell Transplant, vol.20, issue.10, pp.1575-1588, 2011.

H. A. Awad, M. Q. Wickham, H. A. Leddy, J. M. Gimble, and F. Guilak, Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds, Biomaterials, vol.25, issue.16, pp.3211-3222, 2004.

A. T. Mehlhorn, J. Zwingmann, G. Finkenzeller, P. Niemeyer, M. Dauner et al., Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold, Tissue Eng, vol.15, issue.5, pp.1159-1167, 2009.

H. H. Jung, K. Park, and D. K. Han, Preparation of TGF-?1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells, J. Contr. Release, vol.147, issue.1, pp.84-91, 2010.

H. Kang, S. Lu, J. Peng, Q. Yang, S. Liu et al., In vivo construction of tissue-engineered cartilage using adipose-derived stem cells and bioreactor technology, Cell Tissue Bank, vol.16, issue.1, pp.123-133, 2015.

M. Ghiasi, M. Sheykhhasan, R. Qomi, N. Kalhor, and M. Mehdizadeh, Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cel, Indian J. Orthop, vol.49, issue.5, pp.561-561, 2015.

T. Wang, J. H. Lai, L. H. Han, X. Tong, and F. Yang, Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness, Tissue Eng, vol.20, pp.2131-2139, 2014.

P. Malladi, Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells, Aust. J. Pharm.: Cell Physiol, vol.290, issue.4, pp.1139-1146, 2005.

S. Portron, V. Hivernaud, C. Merceron, J. Lesoeur, M. Masson et al., Inverse regulation of early and late chondrogenic differentiation by oxygen tension provides cues for stem cell-based cartilage tissue engineering, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol, vol.35, issue.3, pp.841-857, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01847028

J. Puetzer, J. Williams, A. Gillies, S. Bernacki, and E. G. Loboa, The effects of cyclic hydrostatic pressure on chondrogenesis and viability of human adipose-and bone marrow-derived mesenchymal stem cells in three-dimensional agarose constructs, Tissue Eng, vol.19, issue.1-2, pp.299-306, 2013.

R. Ogawa, D. P. Orgill, G. F. Murphy, and S. Mizuno, Hydrostatic pressure-driven threedimensional cartilage induction using human adipose-derived stem cells and collagen gels, Tissue Eng, vol.21, issue.1-2, pp.257-266, 2015.
DOI : 10.1089/ten.tea.2013.0525

F. Safshekan, M. Tafazzoli-shadpour, M. A. Shokrgozar, N. Haghighipour, R. Mahdian et al., Intermittent hydrostatic pressure enhances growth factor-induced chondroinduction of human adipose-derived mesenchymal stem cells, Artif. Organs, vol.36, issue.12, pp.1065-1071, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00754038

J. Dai, H. Wang, G. Liu, Z. Xu, F. Li et al., Dynamic compression and co-culture with nucleus pulposus cells promotes proliferation and differentiation of adiposederived mesenchymal stem cells, J. Biomech, vol.47, issue.5, pp.966-972, 2014.

Y. Jang, H. Jung, Y. Nam, Y. A. Rim, J. Kim et al., Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adipose-derived stem cells via SOX9 upregulation, Stem Cell Res. Ther, vol.7, issue.1, p.184, 2016.

F. Hildner, S. Concaro, A. Peterbauer, S. Wolbank, M. Danzer et al., Human adipose-derived stem cells contribute to chondrogenesis in coculture with human articular chondrocytes, Tissue Eng, vol.15, issue.12, pp.3961-3969, 2009.

J. H. Lai, H. Rogan, G. Kajiyama, S. B. Goodman, R. L. Smith et al., Interaction between osteoarthritic chondrocytes and adipose-derived stem cells is dependent on cell distribution in three-dimension and transforming growth factor?3 induction, Tissue Eng, vol.21, issue.5-6, pp.992-1002, 2015.

J. H. Lai, G. Kajiyama, R. L. Smith, W. Maloney, and F. Yang, Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels, Sci. Rep, vol.3, pp.3553-3553, 2013.

H. Kang, J. Peng, S. Lu, S. Liu, L. Zhang et al., In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds, J. Tissue Eng. Regen. Med, vol.8, issue.6, pp.442-453, 2014.

S. Portron, C. Merceron, O. Gauthier, J. Lesoeur, S. Sourice et al., Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair, PloS One, vol.8, issue.4, pp.62368-62368, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01847981

M. R. Ahmed, A. Mehmood, F. U. Bhatti, S. N. Khan, and S. Riazuddin, Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage, Osteoarthritis Cartilage, vol.22, issue.11, pp.1894-1901, 2014.

W. J. Jurgens, R. J. Kroeze, B. Zandieh-doulabi, A. Van-dijk, G. A. Renders et al., One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study, BioResearch Open Access, vol.2, issue.4, pp.315-325, 2013.

L. L. Black, J. Gaynor, C. Adams, S. Dhupa, A. E. Sams et al., Effect of intraarticular injection of autologous adiposederived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs, Vet. Therapeut. Res. Appl. Vet. Med, vol.9, issue.3, pp.192-200, 2008.

J. A. Szivek, J. T. Ruth, G. J. Heden, M. A. Martinez, N. H. Diggins et al., Determination of joint loads using new sensate scaffolds for regenerating large cartilage defects in the knee, J. Biomed. Mater. Res. B Appl. Biomater, vol.105, issue.6, pp.1409-1421, 2017.

G. Desando, C. Cavallo, F. Sartoni, L. Martini, A. Parrilli et al., Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model, Arthritis Res. Ther, vol.15, issue.1, p.22, 2013.

C. Bocelli-tyndall, L. Bracci, S. Schaeren, C. Feder-mengus, A. Barbero et al., Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15, Ann. Rheum. Dis, vol.68, issue.8, pp.1352-1359, 2009.

Y. Koh and Y. Choi, Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis, Knee, vol.19, issue.6, pp.902-907, 2012.

Y. Koh, S. Jo, O. Kwon, D. Suh, S. Lee et al., Mesenchymal stem cell injections improve symptoms of knee osteoarthritis, Arthroscopy, vol.29, issue.4, pp.748-755, 2013.

P. Van-pham, K. H. Bui, T. D. Duong, N. T. Nguyen, T. D. Nguyen et al., Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study, Biomed. Res. Ther, vol.1, issue.1, pp.2-2, 2014.

C. H. Jo, Y. G. Lee, W. H. Shin, H. Kim, J. W. Chai et al., Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-ofconcept clinical trial, Stem Cell, vol.32, issue.5, pp.1254-1266, 2014.

K. L. Caldwell and J. Wang, Cell-based articular cartilage repair: the link between development and regeneration, Osteoarthritis Cartilage, vol.23, issue.3, pp.351-362, 2014.

A. R. Tan, E. Alegre-aguarón, G. D. O'connell, C. D. Vandenberg, R. K. Aaron et al., Passage-dependent relationship between mesenchymal stem cell mobilization and chondrogenic potential, Osteoarthritis Cartilage, vol.23, issue.2, pp.319-327, 2015.

C. D. Bari, F. Dell'accio, P. Tylzanowski, and F. P. Luyten, Multipotent mesenchymal stem cells from adult human synovial membrane, Arthritis Rheum, vol.44, issue.8, pp.1928-1942, 2001.

M. Pei, F. He, B. M. Boyce, and V. L. Kish, Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs, Osteoarthritis Cartilage, vol.17, issue.6, pp.714-722, 2009.

T. Nakamura, I. Sekiya, T. Muneta, D. Hatsushika, M. Horie et al., Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs, Cytotherapy, vol.14, issue.3, pp.327-338, 2012.

K. Shimomura, W. Ando, K. Tateishi, R. Nansai, H. Fujie et al., The influence of skeletal maturity on allogenic synovial mesenchymal stem cell

V. Graceffa, Biomaterials, vol.192, pp.199-225, 2019.

, based repair of cartilage in a large animal model, Biomaterials, vol.31, issue.31, pp.8004-8011, 2010.

R. Shimizu, N. Kamei, N. Adachi, M. Hamanishi, G. Kamei et al., Repair mechanism of osteochondral defect promoted by bioengineered chondrocyte sheet, Tissue Eng, vol.21, issue.5-6, pp.1131-1141, 2015.

R. Williams, I. M. Khan, K. Richardson, L. Nelson, H. E. Mccarthy et al., Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage, PloS One, vol.5, issue.10, p.13246, 2010.

A. J. Neumann, O. F. Gardner, R. Williams, M. Alini, C. W. Archer et al., Human articular cartilage progenitor cells are responsive to mechanical stimulation and adenoviral-mediated overexpression of bone-morphogenetic protein 2, PloS One, vol.10, issue.8, p.136229, 2015.

P. Chong, L. Selvaratnam, A. A. Abbas, and T. Kamarul, Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells, J. Orthop. Res, vol.30, issue.4, pp.634-642, 2012.

Y. H. Choi, M. D. Burdick, and R. M. Strieter, Human circulating fibrocytes have the capacity to differentiate osteoblasts and chondrocytes, Int. J. Biochem. Cell Biol, vol.42, issue.5, pp.662-671, 2010.

T. Tondreau, N. Meuleman, A. Delforge, M. Dejeneffe, R. Leroy et al., Mesenchymal stem cells derived from CD133positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity, Stem Cell, vol.23, issue.8, pp.1105-1112, 2005.

K. Saw, A. Anz, S. Merican, Y. Tay, K. Ragavanaidu et al., Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology, Arthroscopy, vol.27, issue.4, pp.493-506, 2011.

, Chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in vitro, Microsc. Res. Tech, vol.78, issue.8, pp.667-675, 2015.

L. Wang, I. Tran, K. Seshareddy, M. L. Weiss, and M. S. Detamore, A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering, Tissue Eng, vol.15, issue.8, pp.2259-2266, 2009.

X. Chen, F. Zhang, X. He, Y. Xu, Z. Yang et al., Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering, Injury, vol.44, issue.4, pp.540-549, 2013.

M. Esposito, A. Lucariello, C. Costanzo, A. Fiumarella, A. Giannini et al., Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields, In Vivo, vol.27, issue.4, pp.495-500, 2013.

H. Yan and C. Yu, Repair of full-thickness cartilage defects with cells of different origin in a rabbit model, Arthroscopy, vol.23, issue.2, pp.178-187, 2007.

Y. Ito, J. S. Fitzsimmons, A. Sanyal, M. A. Mello, N. Mukherjee et al., Localization of chondrocyte precursors in periosteum, Osteoarthritis Cartilage, vol.9, issue.3, pp.215-223, 2001.

C. S. Mara, A. R. Sartori, A. S. Duarte, A. L. Andrade, M. A. Pedro et al., Periosteum as a source of mesenchymal stem cells: the effects of TGF-?3 on chondrogenesis, Clinics, vol.66, issue.3, pp.487-492, 2011.

P. J. Emans, L. W. Van-rhijn, T. J. Welting, A. Cremers, N. Wijnands et al., Autologous engineering of cartilage, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.8, pp.3418-3423, 2010.

S. Wakitani and T. Yamamoto, Response of the donor and recipient cells in mesenchymal cell transplantation to cartilage defect, Microsc. Res. Tech, vol.58, issue.1, pp.14-18, 2002.

S. Wakitani, T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour et al., Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage, J. Bone Joint Surg. Am, vol.76, issue.4, pp.579-592, 1994.

R. Andriamanalijaona, E. Duval, M. Raoudi, S. Lecourt, J. T. Vilquin et al., Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture, Osteoarthritis Cartilage, vol.16, issue.12, pp.1509-1518, 2008.

N. Adachi, K. Sato, A. Usas, F. H. Fu, M. Ochi et al., Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects, J. Rheumatol, vol.29, issue.9, pp.1920-1930, 2002.

R. Kuroda, A. Usas, S. Kubo, K. Corsi, H. Peng et al., Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells, Arthritis Rheum, vol.54, issue.2, pp.433-442, 2006.

T. Matsumoto, S. Kubo, L. B. Meszaros, K. A. Corsi, G. M. Cooper et al., The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair, Arthritis Rheum, vol.58, issue.12, pp.3809-3819, 2008.

Y. S. Kim, H. J. Lee, J. E. Yeo, Y. I. Kim, Y. J. Choi et al., Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus, Am. J. Sports Med, vol.43, issue.2, pp.399-406, 2015.

T. Morito, T. Muneta, K. Hara, Y. J. Ju, T. Mochizuki et al., Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans, Rheumatology, vol.47, issue.8, pp.1137-1143, 2008.

D. Murata, D. Miyakoshi, T. Hatazoe, N. Miura, S. Tokunaga et al., Multipotency of equine mesenchymal stem cells derived from synovial fluid, Vet. J, vol.202, issue.1, pp.53-61, 2014.

E. A. Jones, A. English, K. Henshaw, S. E. Kinsey, A. F. Markham et al., Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis, Arthritis Rheum, vol.50, issue.3, pp.817-827, 2004.

E. A. Jones, A. Crawford, A. English, K. Henshaw, J. Mundy et al., Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level, Arthritis Rheum, vol.58, issue.6, pp.1731-1740, 2008.

Y. Matsukura, T. Muneta, K. Tsuji, H. Koga, and I. Sekiya, Mesenchymal stem cells in synovial fluid increase after meniscus injury, Clin. Orthop. Relat. Res, vol.472, issue.5, pp.1357-1364, 2014.

A. M. Craft, N. Ahmed, J. S. Rockel, G. S. Baht, B. A. Alman et al., Specification of chondrocytes and cartilage tissues from embryonic stem cells, Development, vol.140, issue.12, pp.2597-2610, 2013.

J. Ko, K. Kim, S. Park, and G. Im, In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells, Biomaterials, vol.35, issue.11, pp.3571-3581, 2014.

Y. Wei, W. Zeng, R. Wan, J. Wang, Q. Zhou et al., Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix, Eur. Cell. Mater, vol.23, pp.1-12, 2012.

B. O. Diekman, N. Christoforou, V. P. Willard, H. Sun, J. Sanchez-adams et al., Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells, Proc. Natl. Acad. Sci. U. S. A, vol.109, issue.47, pp.19172-19177, 2012.

A. M. Craft, J. S. Rockel, Y. Nartiss, R. A. Kandel, B. A. Alman et al., Generation of articular chondrocytes from human pluripotent stem cells, Nat. Biotechnol, vol.33, issue.6, pp.638-645, 2015.

J. Liu, H. Nie, Z. Xu, X. Niu, S. Guo et al., The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects, PloS One, vol.9, issue.11, p.111566, 2014.

X. Xu, D. Shi, Y. Liu, Y. Yao, J. Dai et al., In vivo repair of full-thickness cartilage defect with human iPSC-derived mesenchymal progenitor cells in a rabbit model, Exp. Therap. Med, vol.14, issue.1, pp.239-245, 2017.

J. M. Brunger, A. Zutshi, V. P. Willard, C. A. Gersbach, and F. Guilak, CRISPR/Cas9 editing of murine induced pluripotent stem cells for engineering inflammationresistant tissues, Arthritis Rheum, vol.69, issue.5, pp.1111-1121, 2017.

A. Yamashita, S. Liu, K. Woltjen, B. Thomas, G. Meng et al., Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells, Sci. Rep, vol.3, 1978.

Y. Jiang and R. S. Tuan, Origin and function of cartilage stem/progenitor cells in osteoarthritis, Nat. Rev. Rheumatol, vol.11, issue.4, pp.206-212, 2015.

J. M. Murphy, K. Dixon, S. Beck, D. Fabian, A. Feldman et al., Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis, Arthritis Rheum, vol.46, issue.3, pp.704-713, 2002.

V. Dudics, A. Kunstár, J. Kovács, T. Lakatos, P. Géher et al., Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microculture system, Cells Tissues Organs, vol.189, issue.5, pp.307-316, 2009.

M. P. De-miguel, S. Fuentes-julian, A. Blazquez-martinez, C. Y. Pascual, M. A. Aller et al., Arnalich-Montiel, Immunosuppressive properties of mesenchymal stem cells: advances and applications, Curr. Mol. Med, vol.12, issue.5, pp.574-591, 2012.

G. M. Van-buul, E. Villafuertes, P. K. Bos, J. H. Waarsing, N. Kops et al., Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture, Osteoarthritis Cartilage, vol.20, issue.10, pp.1186-1196, 2012.

P. M. Van-der-kraan, W. B. Van-den, and . Berg, Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?, Osteoarthritis Cartilage, vol.20, issue.3, pp.223-232, 2012.

C. R. Chu, M. Szczodry, and S. Bruno, Animal models for cartilage regeneration and repair, Tissue Eng. Part B, vol.16, issue.1, pp.105-115, 2010.

V. Russo, C. Yu, P. Belliveau, A. Hamilton, and L. E. Flynn, Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications, Stem cell transl, Med, vol.3, issue.2, pp.206-217, 2014.

B. M. Schipper, K. G. Marra, W. Zhang, A. D. Donnenberg, and J. P. Rubin, Regional anatomic and age effects on cell function of human adipose-derived stem cells, Ann. Plast. Surg, vol.60, issue.5, pp.538-544, 2008.

V. Van-harmelen, K. Röhrig, and H. Hauner, Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects, Metabolism, vol.53, issue.5, pp.632-637, 2004.

C. N. Engen, L. Engebretsen, and A. Aroen, Knee cartilage defect patients enrolled in randomized controlled trials are not representative of patients in orthopedic practice, Cartilage, vol.1, issue.4, pp.312-319, 2010.

C. B. Foldager, J. Farr, and A. H. Gomoll, Patients scheduled for chondrocyte implantation treatment with MACI have larger defects than those enrolled in clinical trials, Cartilage, vol.7, issue.2, pp.140-148, 2016.

X. Chevalier, Autologous chondrocyte implantation for cartilage defects: development and applicability to osteoarthritis, Joint Bone Spine, vol.67, issue.6, pp.572-578, 2000.

I. Henderson, P. Lavigne, H. Valenzuela, and B. Oakes, Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs, Clin. Orthop. Relat. Res, vol.455, pp.253-261, 2007.

T. Hamada, T. Sakai, H. Hiraiwa, M. Nakashima, Y. Ono et al., Biomaterials, vol.192, pp.199-225, 2019.

N. Ishiguro, Surface markers and gene expression to characterize the differentiation of monolayer expanded human articular chondrocytes, Nagoya J. Med. Sci, vol.75, issue.1-2, pp.101-111, 2013.

D. Rh, J. H. , V. D. Ja, .. O. Jc, and W. Gj, In vitro expansion affects the response of chondrocytes to mechanical stimulation, Osteoarthritis Cartilage, vol.16, issue.3, pp.385-391, 2008.

J. Diaz-romero, J. P. Gaillard, S. P. Grogan, D. Nesic, T. Trub et al., Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture, J. Cell. Physiol, vol.202, issue.3, pp.731-742, 2005.

M. Schnabel, S. Marlovits, G. Eckhoff, I. Fichtel, L. Gotzen et al., Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture, Osteoarthritis Cartilage, vol.10, issue.1, pp.62-70, 2002.

, Preparation of IDEs and INDs for Products Intended to Repair or Replace Knee Cartilage, 2011.

, Reflection Paper on In-vitro Cultured Chondrocyte Containing Products for Cartilage Repair of the Knee, 2010.

F. Zeifang, D. Oberle, C. Nierhoff, W. Richter, B. Moradi et al., Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial, Am. J. Sports Med, vol.38, issue.5, pp.924-933, 2010.

J. Farr, B. J. Cole, S. Sherman, and V. Karas, Particulated articular cartilage: CAIS and DeNovo NT, J. Knee Surg, vol.25, issue.1, pp.23-29, 2012.
DOI : 10.1055/s-0031-1299652

T. A. Selmi, P. Verdonk, P. Chambat, F. Dubrana, J. F. Potel et al., Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years, J. Bone Joint Surg. Br, vol.90, issue.5, pp.597-604, 2008.

A. Clave, J. F. Potel, E. Servien, P. Neyret, F. Dubrana et al., Third-generation autologous chondrocyte implantation versus mosaicplasty for knee cartilage injury: 2-year randomized trial, J. Orthop. Res, vol.34, issue.4, pp.658-665, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01313288

N. Y. Choi, B. W. Kim, W. J. Yeo, H. B. Kim, D. S. Suh et al., Gel-type autologous chondrocyte (Chondron) implantation for treatment of articular cartilage defects of the knee, BMC Muscoskel. Disord, vol.11, p.103, 2010.

S. Fickert, P. Gerwien, B. Helmert, T. Schattenberg, S. Weckbach et al., One-year clinical and radiological results of a prospective, investigator-initiated trial examining a novel, purely autologous 3-dimensional autologous chondrocyte transplantation product in the knee, Cartilage, vol.3, issue.1, pp.27-42, 2012.

C. Becher, V. Laute, S. Fickert, W. Zinser, P. Niemeyer et al., Safety of three different product doses in autologous chondrocyte implantation: results of a prospective, randomised, controlled trial, J. Orthop. Surg. Res, vol.12, issue.1, p.71, 2017.

M. O. Brix, D. Stelzeneder, C. Chiari, U. Koller, S. Nehrer et al., Treatment of full-thickness chondral defects with hyalograft C in the knee: long-term results, Am. J. Sports Med, vol.42, issue.6, pp.1426-1432, 2014.

K. Slynarskia, W. Widuchowskib, M. Snowc, W. Weissd, J. Kruczynskie et al., Primary chondrocytes and bone marrow cells on a 3D co-polymer scaffold: 2-year results of a prospective, multicenter, single-arm clinical trial in patients with cartilage defects of the knee, Rev. Chir. Orthopédique Traumatol, vol.101, pp.17-18, 2015.

D. E. Anderson, R. J. Williams-3rd, T. M. Deberardino, D. C. Taylor, C. B. Ma et al., Magnetic resonance imaging characterization and clinical outcomes after NeoCart surgical therapy as a primary reparative treatment for knee cartilage injuries, Am. J. Sports Med, vol.45, issue.4, pp.875-883, 2017.

L. Zak, C. Albrecht, B. Wondrasch, H. Widhalm, G. Vekszler et al., Results 2 years after matrix-associated autologous chondrocyte transplantation using the novocart 3D scaffold: an analysis of clinical and radiological data, Am. J. Sports Med, vol.42, issue.7, pp.1618-1627, 2014.

F. Mccormick, B. J. Cole, B. Nwachukwu, J. D. Harris, H. D. Adkisson et al., Treatment of focal cartilage defects with a juvenile allogeneic 3-dimensional articular cartilage graft, Operat. Tech. Sports Med, vol.21, pp.95-99, 2013.

Y. B. Park, C. W. Ha, C. H. Lee, Y. C. Yoon, and Y. G. Park, Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up, Stem cell transl. Med, vol.6, issue.2, pp.613-621, 2017.

S. Wakitani, T. Mitsuoka, N. Nakamura, Y. Toritsuka, Y. Nakamura et al., Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports, Cell Transplant, vol.13, issue.5, pp.595-600, 2004.

M. Kanichai, D. Ferguson, P. J. Prendergast, and V. A. Campbell, Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha, J. Cell. Physiol, vol.216, issue.3, pp.708-715, 2008.

E. Aro, R. Khatri, R. Gerard-o'riley, L. Mangiavini, J. Myllyharju et al., Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes, J. Biol. Chem, vol.287, issue.44, pp.37134-37144, 2012.

L. Bentovim, R. Amarilio, and E. Zelzer, HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development, Development, vol.139, issue.23, pp.4473-4483, 2012.

C. Henrionnet, G. Liang, E. Roeder, M. Dossot, H. Wang et al., Hypoxia for mesenchymal stem cell expansion and differentiation: the best way for enhancing TGFß-induced chondrogenesis and preventing calcifications in alginate beads, Tissue Eng. Part A, vol.23, pp.913-922, 2017.

J. C. Robins, N. Akeno, A. Mukherjee, R. R. Dalal, B. J. Aronow et al., Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9, Bone, vol.37, issue.3, pp.313-322, 2005.

P. Malladi, Y. Xu, M. Chiou, A. J. Giaccia, and M. T. Longaker, Hypoxia inducible factor1alpha deficiency affects chondrogenesis of adipose-derived adult stromal cells, Tissue Eng, vol.13, issue.6, pp.1159-1171, 2007.

I. B. Coimbra, S. A. Jimenez, D. F. Hawkins, S. Piera-velazquez, and D. G. Stokes, Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes, Osteoarthritis Cartilage, vol.12, issue.4, pp.336-345, 2004.

J. E. Lafont, S. Talma, and C. L. Murphy, Hypoxia-inducible factor 2 alpha is essential for hypoxic induction of the human articular chondrocyte phenotype, Arthritis Rheum, vol.56, issue.10, pp.3297-3306, 2007.

B. D. Markway, H. Cho, J. Zilberman-rudenko, P. Holden, A. Mcalinden et al., Hypoxia-inducible factor 3-alpha expression is associated with the stable chondrocyte phenotype, J. Orthop. Res, vol.33, issue.11, pp.1561-1570, 2015.

P. Giannoni, M. Siegrist, E. B. Hunziker, and M. Wong, The mechanosensitivity of cartilage oligomeric matrix protein (COMP), Biorheology, vol.40, issue.1-3, pp.101-109, 2003.

T. T. Chowdhury, R. N. Appleby, D. M. Salter, D. A. Bader, and D. A. Lee, Integrin-mediated mechanotransduction in IL-1 beta stimulated chondrocytes, Biomechanics Model. Mechanobiol, vol.5, issue.2-3, pp.192-201, 2006.

J. A. Browning, K. Saunders, J. P. Urban, and R. J. Wilkins, The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes, Biorheology, vol.41, issue.3-4, pp.299-308, 2004.

S. K. Han, W. Wouters, A. Clark, and W. Herzog, Mechanically induced calcium signaling in chondrocytes in situ, J. Orthop. Res, vol.30, issue.3, pp.475-481, 2012.

B. Pingguan-murphy, M. El-azzeh, D. L. Bader, and M. M. Knight, Cyclic compression of chondrocytes modulates a purinergic calcium signalling pathway in a strain rateand frequency-dependent manner, J. Cell. Physiol, vol.209, issue.2, pp.389-397, 2006.

A. K. Wann, N. Zuo, C. J. Haycraft, C. G. Jensen, C. A. Poole et al., Primary cilia mediate mechanotransduction through control of ATPinduced Ca2+ signaling in compressed chondrocytes, Faseb. J, vol.26, issue.4, pp.1663-1671, 2012.

S. Degala, W. R. Zipfel, and L. J. Bonassar, Chondrocyte calcium signaling in response to fluid flow is regulated by matrix adhesion in 3-D alginate scaffolds, Arch. Biochem. Biophys, vol.505, issue.1, pp.112-117, 2011.

M. M. Knight, T. Toyoda, D. A. Lee, and D. L. Bader, Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose, J. Biomech, vol.39, issue.8, pp.1547-1551, 2006.

J. Li, J. Wang, Y. Zou, Y. Zhang, D. Long et al., The influence of delayed compressive stress on TGF-beta1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways, Biomaterials, vol.33, issue.33, pp.8395-8405, 2012.

W. Madej, A. Van-caam, E. N. Blaney-davidson, P. M. Van-der-kraan, and P. Buma, Physiological and excessive mechanical compression of articular cartilage activates Smad2/3P signaling, Osteoarthritis Cartilage, vol.22, issue.7, pp.1018-1025, 2014.

G. Yourek, M. A. Hussain, and J. J. Mao, Cytoskeletal changes of mesenchymal stem cells during differentiation, Am. Soc. Artif. Intern. Organs J, vol.53, issue.2, pp.219-228, 2007.

D. R. Haudenschild, J. Chen, N. Steklov, M. K. Lotz, and D. D. D'lima, Characterization of the chondrocyte actin cytoskeleton in living three-dimensional culture: response to anabolic and catabolic stimuli, Mol. Cell. BioMech. MCB, vol.6, issue.3, pp.135-144, 2009.

M. Kim, K. Song, E. J. Jin, and J. Sonn, Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in different way, Exp. Mol. Med, vol.44, issue.9, pp.521-528, 2012.

S. J. Bryant, K. S. Anseth, D. A. Lee, and D. L. Bader, Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain, J. Orthop. Res, vol.22, issue.5, pp.1143-1149, 2004.

D. A. Lee and D. L. Bader, The development and characterization of an in vitro system to study strain-induced cell deformation in isolated chondrocytes, in vitro cellular & developmental biology, Animal, vol.31, issue.11, pp.828-835, 1995.

B. Schmierer and C. S. Hill, TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility, Nat. Rev. Mol. Cell Biol, vol.8, issue.12, pp.970-982, 2007.

N. Tsumaki, K. Tanaka, E. Arikawa-hirasawa, T. Nakase, T. Kimura et al., Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation, J. Cell Biol, vol.144, issue.1, pp.161-173, 1999.