Z. G. Levine and S. Walker, The biochemistry of O-GlcNAc transferase: Which functions make it essential in mammalian cells?, Annu Rev Biochem, vol.85, pp.631-657, 2016.

M. R. Bond and J. A. Hanover, O-GlcNAc cycling: A link between metabolism and chronic disease, Annu Rev Nutr, vol.33, pp.205-229, 2013.

D. J. Vocadlo, O-GlcNAc processing enzymes: Catalytic mechanisms, substrate specificity, and enzyme regulation, Curr Opin Chem Biol, vol.16, pp.488-497, 2012.

C. Guinez, O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver, Diabetes, vol.60, pp.1399-1413, 2011.

H. B. Ruan, O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1? stability, Cell Metab, vol.16, pp.226-237, 2012.

B. A. Lewis and J. A. Hanover, O-GlcNAc and the epigenetic regulation of gene expression, J Biol Chem, vol.289, pp.34440-34448, 2014.

H. Cho, Regulation of circadian behaviour and metabolism by REV-ERB-? and REV-ERB-?, Nature, vol.485, pp.123-127, 2012.

D. Grant, GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erb?, ACS Chem Biol, vol.5, pp.925-932, 2010.

A. Bugge, Rev-erb? and Rev-erb? coordinately protect the circadian clock and normal metabolic function, Genes Dev, vol.26, pp.657-667, 2012.

Z. Sun, Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor, Mol Cell, vol.52, pp.769-782, 2013.

Y. Zhang, HNF6 and Rev-erb? integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms, Genes Dev, vol.30, pp.1636-1644, 2016.

T. Okabe, REV-ERB? influences the stability and nuclear localization of the glucocorticoid receptor, J Cell Sci, vol.129, pp.4143-4154, 2016.

H. Mohammed, Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes, Nat Protoc, vol.11, pp.316-326, 2016.

S. W. Ryter and R. M. Tyrrell, An HPLC method to detect heme oxygenase activity, Curr Protoc Toxicol Chapter, issue.9, 2001.

Y. Hering, Development and implementation of a cell-based assay to discover agonists of the nuclear receptor REV-ERB?, J Biol Methods, vol.5, p.94, 2018.

L. Yin, Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways, Science, vol.318, pp.1786-1789, 2007.
DOI : 10.1126/science.1150179

C. Ha and K. Lim, O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities, Biochem Biophys Res Commun, vol.467, pp.341-347, 2015.
DOI : 10.1016/j.bbrc.2015.09.155

T. Li, Novel role of nuclear receptor Rev-erb? in hepatic stellate cell activation: Potential therapeutic target for liver injury, Hepatology, vol.59, pp.2383-2396, 2014.

P. Vella, Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells, Mol Cell, vol.49, pp.645-656, 2013.

N. Khidekel, S. B. Ficarro, E. C. Peters, and L. C. Hsieh-wilson, Exploring the O-GlcNAc proteome: Direct identification of O-GlcNAc-modified proteins from the brain, Proc Natl Acad Sci, vol.101, pp.13132-13137, 2004.

V. Dehennaut, D. Leprince, and T. Lefebvre, O-GlcNAcylation, an epigenetic mark. Focus on the histone code, TET family proteins, and polycomb group proteins, Front Endocrinol (Lausanne), vol.5, p.155, 2014.

H. B. Ruan, J. P. Singh, M. D. Li, J. Wu, and X. Yang, Cracking the O-GlcNAc code in metabolism, Trends Endocrinol Metab, vol.24, pp.301-309, 2013.
DOI : 10.1016/j.tem.2013.02.002

URL : http://europepmc.org/articles/pmc3783028?pdf=render

D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex, Science, vol.307, pp.1098-1101, 2005.

X. Yang and K. Qian, Protein O-GlcNAcylation: Emerging mechanisms and functions, Nat Rev Mol Cell Biol, vol.18, pp.452-465, 2017.
DOI : 10.1038/nrm.2017.22

URL : http://europepmc.org/articles/pmc5667541?pdf=render

D. Azzout-marniche, Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes, Biochem J, vol.350, pp.389-393, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01611459

J. D. Horton, Y. Bashmakov, I. Shimomura, and H. Shimano, Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice, Proc Natl Acad Sci, vol.95, pp.5987-5992, 1998.

B. Delatte, R. Deplus, and F. Fuks, Playing TETris with DNA modifications, EMBO J, vol.33, pp.1198-1211, 2014.
DOI : 10.15252/embj.201488290

URL : http://emboj.embopress.org/content/33/11/1198.full.pdf

N. Dhliwayo, M. P. Sarras, . Jr, E. Luczkowski, S. M. Mason et al., Parp inhibition prevents ten-eleven translocase enzyme activation and hyperglycemia-induced DNA demethylation, Diabetes, vol.63, pp.3069-3076, 2014.
DOI : 10.2337/db13-1916

URL : http://diabetes.diabetesjournals.org/content/diabetes/63/9/3069.full.pdf

R. F. Ortiz-meoz, A small molecule that inhibits OGT activity in cells, ACS Chem Biol, vol.10, pp.1392-1397, 2015.

J. P. Thomson, DNA immunoprecipitation semiconductor sequencing (DIPSC-seq) as a rapid method to generate genome wide epigenetic signatures, Sci Rep, vol.5, p.9778, 2015.
DOI : 10.1038/srep09778

URL : https://www.nature.com/articles/srep09778.pdf

D. Feng, A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism, Science, vol.331, pp.1315-1319, 2011.
DOI : 10.1126/science.1198125

URL : http://europepmc.org/articles/pmc3389392?pdf=render

L. Martelot and G. , REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis, PLoS Biol, vol.7, p.1000181, 2009.

F. Gilardi, Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals, PLoS Genet, vol.10, p.1004155, 2014.

W. D. Cheung, K. Sakabe, M. P. Housley, W. B. Dias, and G. W. Hart, O-linked beta-Nacetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins, J Biol Chem, vol.283, pp.33935-33941, 2008.
DOI : 10.1074/jbc.m806199200

URL : http://www.jbc.org/content/283/49/33935.full.pdf

K. Kaasik, Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock, Cell Metab, vol.17, pp.291-302, 2013.

X. Yang, Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance, Nature, vol.451, pp.964-969, 2008.

S. Q. Shi, T. S. Ansari, O. P. Mcguinness, D. H. Wasserman, and C. H. Johnson, Circadian disruption leads to insulin resistance and obesity, Curr Biol, vol.23, pp.372-381, 2013.

M. S. Robles, S. J. Humphrey, and M. Mann, Phosphorylation is a central mechanism for circadian control of metabolism and physiology, Cell Metab, vol.25, pp.118-127, 2017.

C. Jouffe, The circadian clock coordinates ribosome biogenesis, PLoS Biol, vol.11, p.1001455, 2013.

M. P. Carrasco-benso, Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity, FASEB J, vol.30, pp.3117-3123, 2016.

B. B. Pinkhasov, V. G. Selyatinskaya, E. L. Astrakhantseva, and E. V. Anufrienko, Circadian rhythms of carbohydrate metabolism in women with different types of obesity, Bull Exp Biol Med, vol.161, pp.323-326, 2016.

H. Yang, TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites, Cell Res, vol.24, pp.1017-1020, 2014.

F. T. Shi, Ten-eleven translocation 1 (Tet1) is regulated by O-linked Nacetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells, J Biol Chem, vol.288, pp.20776-20784, 2013.

Q. Zhang, Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked ?-N-acetylglucosamine transferase (OGT), J Biol Chem, vol.289, pp.5986-5996, 2014.

Y. Zhang, GENE REGULATION. Discrete functions of nuclear receptor Reverb? couple metabolism to the clock, Science, vol.348, pp.1488-1492, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01573900

H. Wu, Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells, Nature, vol.473, pp.389-393, 2011.

R. Papazyan, Physiological suppression of lipotoxic liver damage by complementary actions of HDAC3 and SCAP/SREBP, Cell Metab, vol.24, pp.863-874, 2016.

F. Maekawa, Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork, Epigenetics, vol.7, pp.1046-1056, 2012.

E. Woldt, Rev-erb-? modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy, Nat Med, vol.19, pp.1039-1046, 2013.