C. Beham-schmid, Aggressive lymphoma 2016: revision of the WHO classification. Memo-Mag, Eur Med Oncol, vol.10, pp.248-254, 2017.

G. L. Lenz and L. M. Staudt, Aggressive Lymphomas, N Engl J Med, p.13, 2010.

A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, vol.403, p.9, 2000.

G. Lenz, G. W. Wright, N. Emre, H. Kohlhammer, S. S. Dave et al.,

W. Xiao, Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways, Proc Natl Acad Sci, vol.105, pp.13520-13525, 2008.

A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo et al., The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma, N Engl J Med, vol.346, pp.1937-1947, 2002.

G. Wright, B. Tan, A. Rosenwald, E. H. Hurt, A. Wiestner et al., A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma, Proc Natl Acad Sci, vol.100, pp.9991-9996, 2003.

L. H. Sehn and R. D. Gascoyne, Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity, Blood, vol.125, pp.22-32, 2015.

L. M. Staudt and S. Dave, The Biology of Human Lymphoid Malignancies Revealed by Gene Expression Profiling, Advances in Immunology, pp.87005-87006

H. Tilly, M. Gomes-da-silva, U. Vitolo, A. Jack, M. Meignan et al., Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann Oncol, vol.26, pp.116-125, 2015.

R. E. Davis, K. D. Brown, U. Siebenlist, and L. Staudt, Constitutive Nuclear Factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells, J Exp Med, vol.194, pp.1861-1874, 2001.

M. Compagno, W. K. Lim, A. Grunn, S. V. Nandula, M. Brahmachary et al., Mutations of multiple genes cause deregulation of NF-?B in diffuse large B-cell lymphoma, Nature, vol.459, pp.717-721, 2009.

Q. Qiao, C. Yang, C. Zheng, L. Fontan, L. David et al., Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly, Mol Cell, vol.51, pp.766-779, 2013.

R. E. Davis, V. N. Ngo, G. Lenz, P. Tolar, R. M. Young et al., Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma, Nature, vol.463, pp.88-92, 2010.

A. Oeckinghaus, E. Wegener, V. Welteke, U. Ferch, S. Ç. Arslan et al., Malt1 ubiquitination triggers NF-?B signaling upon T-cell activation, EMBO J, vol.26, pp.4634-4645, 2007.

C. Wu and J. D. Ashwell, NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-B activation, Proc Natl Acad Sci, vol.105, pp.3023-3028, 2008.

G. Lenz, R. E. Davis, V. N. Ngo, L. Lam, T. C. George et al., Oncogenic CARD11 Mutations in Human Diffuse Large B Cell Lymphoma, Science, vol.319, pp.1676-1679, 2008.

G. Bonizzi and M. Karin, The two NF-?B activation pathways and their role in innate and adaptive immunity, TRENDS Immunol, vol.25, pp.280-288, 2004.

A. L. Shaffer, R. M. Young, and L. M. Staudt, Pathogenesis of human B cell lymphomas, Annu Rev Immunol, vol.30, pp.565-610, 2012.

V. N. Ngo, R. E. Davis, L. Lamy, X. Yu, H. Zhao et al., A lossof-function RNA interference screen for molecular targets in cancer, Nature, vol.441, pp.106-110, 2006.

D. J. Rawlings, K. Sommer, M. Moreno-garcia, V. N. Ngo, R. M. Young et al., The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes, Nat Rev Immunol, vol.6, pp.115-119, 2006.

G. Takaesu, S. Kishida, A. Hiyama, K. Yamaguchi, H. Shibuya et al.,

, Mediates Activation of TAK1 MAPKKK by Linking TAK1 to TRAF6 in the IL1 Signal Transduction Pathway, TAB2, a Novel Adaptor Protein, vol.5, pp.649-658, 2000.

Y. Qian, M. Commane, J. Ninomiya-tsuji, K. Matsumoto, and X. Li, IRAK-mediated Translocation of TRAF6 and TAB2 in the Interleukin-1-induced Activation of NF?B, J Biol Chem, vol.276, pp.41661-41667, 2001.

S. M. Ansell, L. S. Hodge, F. J. Secreto, M. Manske, E. Braggio et al.,

S. N. Hart, Activation of TAK1 by MYD88 L265P drives malignant B-cell Growth in non-Hodgkin lymphoma, Blood Cancer J, vol.4, pp.183-183, 2014.

C. Wang, L. Deng, M. Hong, G. R. Akkaraju, J. Inoue et al., TAK1 is a ubiquitin-dependent kinase of MKK and IKK, Nature, vol.412, pp.346-351, 2001.

L. Deng, C. Wang, E. Spencer, L. Yang, A. Braun et al., Activation of the IB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain, p.11

W. H. Wilson, R. M. Young, R. Schmitz, Y. Yang, S. Pittaluga et al., Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma, Nat Med, vol.21, pp.922-926, 2015.

J. D. Phelan, R. M. Young, D. E. Webster, S. Roulland, G. W. Wright et al., A multiprotein supercomplex controlling oncogenic signalling in lymphoma, Nature, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117984

L. Pasqualucci, V. Trifonov, G. Fabbri, J. Ma, D. Rossi et al.,

O. Elliot, Analysis of the coding genome of diffuse large B-cell lymphoma, Nat Genet, vol.43, pp.830-837, 2011.

T. L. Naylor, H. Tang, B. A. Ratsch, A. Enns, A. Loo et al., Protein Kinase C Inhibitor Sotrastaurin Selectively Inhibits the Growth of CD79 Mutant Diffuse Large B-Cell Lymphomas, Cancer Res, vol.71, pp.2643-2653, 2011.

Y. Yang, A. L. Shaffer, N. Emre, M. Ceribelli, M. Zhang et al.,

H. Kohlhammer, Exploiting Synthetic Lethality for the Therapy of ABC Diffuse Large B Cell Lymphoma, Cancer Cell, vol.21, pp.723-737, 2012.

, Phosphorylation of CARMA1 Plays a Critical Role in T Cell Receptor-Mediated NF-?B Activation, Immunity, vol.23, pp.575-585, 2005.

R. R. Mccully and J. L. Pomerantz, The Protein Kinase C-Responsive Inhibitory Domain of CARD11 Functions in NF-B Activation To Regulate the Association of Multiple Signaling Cofactors That Differentially Depend on Bcl10 and MALT1 for Association, Mol Cell Biol, vol.28, pp.5668-5686, 2008.

S. M. Dubois, A. C. Wu, Y. Leclair, H. M. Leveau, C. Schol et al., A catalytic-independent role for the LUBAC in NF-kappaB activation upon antigen receptor engagement and in lymphoma cells, Blood, vol.123, pp.2199-2203, 2014.

S. Satpathy, S. A. Wagner, P. Beli, R. Gupta, T. A. Kristiansen et al.,

G. A. Hostager and B. S. , Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation, Mol Syst Biol, vol.11, p.810, 2015.

Y. Yang, C. Yang, W. Chan, Z. Wang, K. E. Deibel et al., Molecular Determinants of Scaffoldinduced Linear Ubiquitinylation of B Cell Lymphoma/Leukemia 10 (Bcl10) during T Cell Receptor and Oncogenic Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling, J Biol Chem, vol.291, pp.25921-25936, 2016.

C. E. Teh, N. Lalaoui, R. Jain, A. N. Policheni, M. Heinlein et al., Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis, Nat Commun, vol.7, p.13353, 2016.

Y. Yang, R. Schmitz, J. Mitala, A. Whiting, W. Xiao et al., Essential role of the linear ubiquitin chain assembly complex in lymphoma revealed by rare germline polymorphisms, Cancer Discov, vol.4, pp.480-493, 2014.

J. D. Phelan, R. M. Young, D. E. Webster, S. Roulland, G. W. Wright et al., A multiprotein supercomplex controlling oncogenic signalling in lymphoma, Nature, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117984

P. Cohen, The regulation of protein function by multisite phosphorylation-a 25 year update, Trends Biochem Sci, vol.25, pp.596-601, 2000.

K. Sommer, B. Guo, J. L. Pomerantz, A. D. Bandaranayake, M. E. Moreno-garcía et al., Phosphorylation of the CARMA1 Linker Controls NF-?B Activation, Immunity, vol.23, pp.561-574, 2005.

H. Shinohara, T. Yasuda, Y. Aiba, H. Sanjo, M. Hamadate et al., PKC? regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1, J Exp Med, vol.202, pp.1423-1431, 2005.

H. Shinohara, S. Maeda, H. Watarai, and T. Kurosaki, I?B kinase ?-induced phosphorylation of CARMA1 contributes to CARMA1-Bcl10-MALT1 complex formation in B cells, J Exp Med, vol.204, pp.3285-3293, 2007.

K. Ishiguro, T. Green, J. Rapley, H. Wachtel, C. Giallourakis et al., Ca2+/Calmodulin-Dependent Protein Kinase II Is a Modulator of CARMA1-Mediated NF-B Activation, Mol Cell Biol, vol.26, pp.5497-5508, 2006.

N. Bidere, V. N. Ngo, J. Lee, C. Collins, L. Zheng et al., Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival, Nature, vol.458, pp.92-96, 2009.

C. Lobry, T. Lopez, A. Israel, and R. Weil, Negative feedback loop in T cell activation through IkappaB kinaseinduced phosphorylation and degradation of Bcl10, Proc Natl Acad Sci U S A, vol.104, pp.908-913, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00162543

E. Scharschmidt, E. Wegener, V. Heissmeyer, A. Rao, and D. Krappmann, Degradation of Bcl10 induced by Tcell activation negatively regulates NF-kappa B signaling, Mol Cell Biol, vol.24, pp.3860-3873, 2004.

E. Wegener, A. Oeckinghaus, N. Papadopoulou, L. Lavitas, M. Schmidt-supprian et al., Essential Role for I?B Kinase ? in Remodeling Carma1-Bcl10-Malt1 Complexes upon T Cell Activation, Mol Cell, vol.23, pp.13-23, 2006.

K. Ishiguro, T. Ando, H. Goto, R. Xavier, S. R. Oruganti et al., Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulindependent protein kinase II, Mol Immunol, vol.44, pp.2095-2100, 2007.

A. Abd-ellah, C. Voogdt, D. Krappmann, P. Möller, and R. B. Marienfeld, GSK3? modulates NF-?B activation and RelB degradation through site-specific phosphorylation of BCL10, Sci Rep, vol.8, 2018.

H. Zeng, L. Di, G. Fu, Y. Chen, X. Gao et al., The Ca 2+dependent Phosphatase Calcineurin Controls the Formation of the Carma1-Bcl10-Malt1 Complex during T Cell Receptor-induced NF-?B Activation, Mol Cell Biol, vol.27, pp.7522-7534, 2007.

S. Frischbutter, C. Gabriel, H. Bendfeldt, A. Radbruch, and R. Baumgrass, Dephosphorylation of Bcl-10 by calcineurin is essential for canonical NF-?B activation in Th cells, Eur J Immunol, vol.41, pp.2349-2357, 2011.

D. Rueda, O. Gaide, L. Ho, E. Lewkowicz, F. Niedergang et al.,

M. Thelen, Bcl10 Controls TCR-and Fc R-Induced Actin Polymerization, J Immunol, vol.178, pp.4373-4384, 2007.

J. Cheng, K. S. Hamilton, and L. P. Kane, Phosphorylation of Carma1, but not Bcl10, by Akt regulates TCR/CD28-mediated NF-?B induction and cytokine production, Mol Immunol, vol.59, pp.110-116, 2014.

J. Bertin, L. Wang, Y. Guo, M. D. Jacobson, J. Poyet et al., CARD11 and CARD14 Are Novel Caspase Recruitment Domain (CARD)/Membrane-associated Guanylate Kinase (MAGUK) Family Members that Interact with BCL10 and Activate NF-?B, J Biol Chem, vol.276, pp.11877-11882, 2001.
DOI : 10.1074/jbc.m010512200

A. C. Eitelhuber, S. Warth, G. Schimmack, M. Düwel, K. Hadian et al., Dephosphorylation of Carma1 by PP2A negatively regulates T-cell activation: Dephosphorylation of Carma1 by PP2A, EMBO J, vol.30, pp.594-605, 2011.

D. Brenner, M. Brechmann, S. Rohling, M. Tapernoux, T. Mock et al.,

M. Krammer and P. H. , Phosphorylation of CARMA1 by HPK1 is critical for NF-B activation in T cells, Proc Natl Acad Sci, vol.106, pp.14508-14513, 2009.

, Phosphorylation within the Protein Kinase C-Regulated Domain Down-Regulates CARMA1 Activity in Lymphocytes, J Immunol, vol.183, pp.7362-7370, 2009.

N. L. Solimini, J. Luo, and S. J. Elledge, Non-Oncogene Addiction and the Stress Phenotype of Cancer Cells, Cell, vol.130, pp.986-988, 2007.

R. L. Lamason, R. R. Mccully, S. M. Lew, and J. L. Pomerantz, Oncogenic CARD11 Mutations Induce Hyperactive Signaling by Disrupting Autoinhibition by the PKC-Responsive Inhibitory Domain, Biochemistry, vol.49, pp.8240-8250, 2010.

M. Thome, O. Gaide, O. Micheau, F. Martinon, D. Bonnet et al., Equine Herpesvirus Protein E10 Induces Membrane Recruitment and Phosphorylation of Its Cellular Homologue, Bcl-10, J Cell Biol, vol.152, pp.1115-1122, 2001.

D. Komander and M. Rape, The ubiquitin code, Annu Rev Biochem, vol.81, pp.203-229, 2012.

Z. J. Chen, M. E. Moreno-garcia, K. Sommer, H. Shinohara, A. D. Bandaranayake et al., MAGUKcontrolled ubiquitination of CARMA1 modulates lymphocyte NF-kappaB activity, Mol Cell Biol, vol.246, pp.922-934, 2010.

H. Hara, T. Yokosuka, H. Hirakawa, C. Ishihara, S. Yasukawa et al., Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-kappaB signalling, Nat Commun, vol.6, p.5555, 2015.

S. Hu, M. Du, S. Park, A. Alcivar, L. Qu et al., cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas, J Clin Invest, vol.116, pp.174-181, 2006.

S. Paul, A. K. Kashyap, W. Jia, Y. He, and B. C. Schaefer, Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB, Immunity, vol.36, pp.947-958, 2012.

Y. Park, H. Jin, and Y. Liu, Regulation of T cell function by the ubiquitin-specific protease USP9X via modulating the Carma1-Bcl10-Malt1 complex, Proc Natl Acad Sci U S A, vol.110, pp.9433-9438, 2013.

E. Naik, J. D. Webster, J. Devoss, J. Liu, R. Suriben et al., Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X, J Exp Med, vol.211, pp.1947-1955, 2014.

E. Naik and V. M. Dixit, Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCbeta Kinase Activity, J Immunol Baltim Md, vol.1950, pp.3438-3451, 2016.

V. Welteke, A. Eitelhuber, M. Duwel, K. Schweitzer, M. Naumann et al., COP9 signalosome controls the Carma1-Bcl10-Malt1 complex upon T-cell stimulation, EMBO Rep, vol.10, pp.642-648, 2009.

S. M. Pedersen, W. Chan, R. P. Jattani, S. Mackie-demauri, and J. L. Pomerantz, Negative Regulation of CARD11

, Signaling and Lymphoma Cell Survival by the E3 Ubiquitin Ligase RNF181, Mol Cell Biol, vol.36, pp.794-808, 2015.

C. Wu and J. D. Ashwell, NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated

, Proc Natl Acad Sci U S A, vol.105, pp.3023-3028, 2008.

Y. Yang, P. Kelly, A. L. Shaffer, R. Schmitz, H. M. Yoo et al.,

M. Nakagawa, Targeting Non-proteolytic Protein Ubiquitination for the Treatment of Diffuse Large B Cell Lymphoma, Cancer Cell, vol.29, pp.494-507, 2016.

C. Alexia, K. Poalas, G. Carvalho, N. Zemirli, J. Dwyer et al.,

C. Castanier, The endoplasmic reticulum acts as a platform for ubiquitylated components of nuclear factor kappaB signaling, Sci Signal, vol.6, p.79, 2013.

Y. Sasaki, S. Sano, M. Nakahara, S. Murata, K. Kometani et al.,

T. Kurosaki, Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells, Proc Natl Acad Sci U S A, vol.32, pp.15247-15252, 2013.

A. Oeckinghaus, E. Wegener, V. Welteke, U. Ferch, S. C. Arslan et al., Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation, EMBO J, vol.26, pp.4634-4645, 2007.

M. Duwel, V. Welteke, A. Oeckinghaus, M. Baens, B. Kloo et al., A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains, J Immunol Baltim Md, vol.1950, pp.7718-7728, 2009.

G. Carvalho, L. Guelte, A. Demian, C. Vazquez, A. Gavard et al., , vol.10, p.1

, and IkappaBalpha during T-cell-receptor-mediated NFkappaB activation, J Cell Sci, vol.123, pp.2375-2380, 2010.

L. Sun, L. Deng, C. Ea, Z. Xia, and Z. J. Chen, The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes, Mol Cell, vol.14, pp.289-301, 2004.

I. Meininger, R. A. Griesbach, D. Hu, T. Gehring, T. Seeholzer et al., Alternative splicing of MALT1 controls signalling and activation of CD4(+) T cells, Nat Commun, vol.7, p.11292, 2016.

N. Bidere, A. L. Snow, K. Sakai, L. Zheng, M. Lenardo et al., TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis, Curr Biol CB, vol.16, pp.1088-1092, 2006.

C. Pelzer, K. Cabalzar, A. Wolf, M. Gonzalez, G. Lenz et al., The protease activity of the paracaspase MALT1 is controlled by monoubiquitination, Nat Immunol, vol.14, pp.337-345, 2013.

, Monoubiquitination and Activity of the Paracaspase MALT1 Requires Glutamate 549 in the Dimerization Interface, PLOS ONE, vol.8, p.72051, 2013.

J. Hachmann, L. E. Edgington-mitchell, M. Poreba, L. E. Sanman, M. Drag et al., Probes to monitor activity of the paracaspase MALT1, Chem Biol, vol.22, pp.139-147, 2015.

A. G. Uren, K. O'rourke, L. A. Aravind, M. T. Pisabarro, S. Seshagiri et al., Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma, Mol Cell, vol.6, pp.961-967, 2000.

B. Coornaert, M. Baens, K. Heyninck, T. Bekaert, M. Haegman et al., T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20, Nat Immunol, vol.9, pp.263-271, 2008.

F. Rebeaud, S. Hailfinger, A. Posevitz-fejfar, M. Tapernoux, R. Moser et al., The proteolytic activity of the paracaspase MALT1 is key in T cell activation, Nat Immunol, vol.9, pp.272-281, 2008.

A. Gewies, O. Gorka, H. Bergmann, K. Pechloff, F. Petermann et al., Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation, Cell Rep, vol.9, pp.1292-1305, 2014.

M. Jaworski, B. J. Marsland, J. Gehrig, W. Held, S. Favre et al., Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity, EMBO J, vol.33, pp.2765-2781, 2014.

F. Bornancin, F. Renner, R. Touil, H. Sic, Y. Kolb et al.,

U. Walker, Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation, J Immunol, vol.194, pp.3723-3734, 2015.

J. W. Yu, S. Hoffman, A. M. Beal, A. Dykon, M. A. Ringenberg et al.,

V. Kasparcova, MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses, PLOS ONE, vol.10, p.127083, 2015.

J. Ruland, G. S. Duncan, A. Wakeham, and T. W. Mak, Differential requirement for Malt1 in T and B cell antigen receptor signaling, Immunity, vol.19, pp.749-758, 2003.

A. A. Ruefli-brasse, D. M. French, and V. M. Dixit, Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase, Science, vol.302, pp.1581-1584, 2003.

H. H. Jabara, T. Ohsumi, J. Chou, M. J. Massaad, H. Benson et al., A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency, J Allergy Clin Immunol, vol.132, pp.135-146, 2013.

M. Jaworski and M. Thome, The paracaspase MALT1: biological function and potential for therapeutic inhibition, Cell Mol Life Sci CMLS, vol.73, pp.459-473, 2016.

C. Malinverni, A. Unterreiner, J. Staal, A. Demeyer, M. Galaup et al., Cleavage by MALT1 induces cytosolic release of A20, Biochem Biophys Res Commun, vol.400, pp.543-547, 2010.

K. Honma, S. Tsuzuki, M. Nakagawa, S. Karnan, Y. Aizawa et al., TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma, Genes Chromosomes Cancer, vol.47, pp.1-7, 2008.

M. Kato, M. Sanada, I. Kato, Y. Sato, J. Takita et al., Frequent inactivation of A20 in B-cell lymphomas, Nature, vol.459, pp.712-716, 2009.

K. Honma, S. Tsuzuki, M. Nakagawa, H. Tagawa, S. Nakamura et al., TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas, Blood, vol.114, pp.2467-2475, 2009.

S. Hailfinger, H. Nogai, C. Pelzer, M. Jaworski, K. Cabalzar et al.,

M. Dorken and B. , Malt1-dependent RelB cleavage promotes canonical NF-B activation in lymphocytes and lymphoma cell lines, Proc Natl Acad Sci, vol.108, pp.14596-14601, 2011.

T. Klein, S. Fung, F. Renner, M. A. Blank, A. Dufour et al.,

P. Schweigler, The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-?B signalling, Nat Commun, vol.6, 2015.

L. Elton, I. Carpentier, J. Staal, Y. Driege, M. Haegman et al., MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-?B signaling, FEBS J, vol.283, pp.403-412, 2016.

T. Douanne, J. Gavard, and N. Bidère, The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling, J Cell Sci, vol.129, pp.1775-1780, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01311283

M. Baens, L. Bonsignore, R. Somers, C. Vanderheydt, S. D. Weeks et al., MALT1 Auto-Proteolysis Is Essential for NF-?B-Dependent Gene Transcription in Activated Lymphocytes, PLoS ONE, vol.9, 2014.

M. Baens, R. Stirparo, Y. Lampi, D. Verbeke, R. Vandepoel et al., Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice, Eur J Immunol, 2018.

C. Wu, Y. , Y. Chen, M. Tsai, C. Cheng et al., Autocleavage of the paracaspase MALT1 at Arg-781 attenuates NF-kappaB signaling and regulates the growth of activated B-cell like diffuse large B-cell lymphoma cells, PloS One, vol.13, p.199779, 2018.

S. Ginster, M. Bardet, A. Unterreiner, C. Malinverni, F. Renner et al., Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation, PloS One, vol.12, 2017.

S. Rosebeck, L. Madden, J. X. Gu, S. Apel, I. J. Appert et al., Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical, Science, vol.331, pp.468-472, 2011.

G. Xiao, E. W. Harhaj, and S. C. Sun, NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100, Mol Cell, vol.7, pp.401-409, 2001.

Z. Nie, M. Du, L. M. Mcallister-lucas, P. C. Lucas, N. G. Bailey et al., Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by, Nat Commun, vol.6, p.5908, 2015.

J. Staal, Y. Driege, T. Bekaert, A. Demeyer, D. Muyllaert et al., T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1: CYLD is cleaved by MALT1, EMBO J, vol.30, pp.1742-1752, 2011.

W. W. Reiley, J. W. Lee, A. J. Wright, A. Wu, X. Tewalt et al.,

M. , Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses, J Exp Med, vol.204, pp.1475-1485, 2007.

T. Uehata, H. Iwasaki, A. Vandenbon, K. Matsushita, E. Hernandez-cuellar et al., Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation, Nat Immunol, vol.153, pp.1079-1089, 2013.

H. Iwasaki, O. Takeuchi, S. Teraguchi, K. Matsushita, T. Uehata et al., The I?B kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1, Nat Immunol, vol.12, pp.692-705, 2011.

K. S. Hamilton, B. Phong, C. Corey, J. Cheng, B. Gorentla et al., T cell receptordependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10, Sci Signal, vol.7, p.55, 2014.

C. A. Ma, J. R. Stinson, Y. Zhang, J. K. Abbott, M. A. Weinreich et al.,

E. Ruffo, Germline hypomorphic CARD11 mutations in severe atopic disease, Nat Genet, vol.49, pp.1192-1201, 2017.

M. N. Wray-dutra, R. Chawla, K. R. Thomas, B. J. Seymour, T. Arkatkar et al., Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells, J Exp Med, vol.206, pp.2313-2320, 2009.

S. Hailfinger, G. Lenz, V. Ngo, A. Posvitz-fejfar, F. Rebeaud et al., Essential role of MALT1 protease activity in activated B cell-like diffuse large, Proc Natl Acad Sci U S A, vol.106, pp.19946-19951, 2009.

S. Hailfinger, G. Lenz, V. Ngo, A. Posvitz-fejfar, F. Rebeaud et al., Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma, Proc Natl Acad Sci, vol.106, pp.19946-19951, 2009.

L. Fontan, C. Yang, V. Kabaleeswaran, L. Volpon, M. J. Osborne et al., MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo, Cancer Cell, vol.22, pp.812-824, 2012.

A. P. Turnbull, S. Ioannidis, W. W. Krajewski, A. Pinto-fernandez, C. Heride et al., Molecular basis of USP7 inhibition by selective small-molecule inhibitors, Nature, vol.550, pp.481-486, 2017.

L. Kategaya, D. Lello, P. Rouge, L. Pastor, R. Clark et al.,

S. Prakash, USP7 small-molecule inhibitors interfere with ubiquitin binding, Nature, vol.550, pp.534-538, 2017.

D. Paquet, D. Kwart, A. Chen, A. Sproul, S. Jacob et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9, Nature, vol.533, pp.125-129, 2016.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPRCas9 system, Nat Protoc, vol.8, pp.2281-2308, 2013.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A Programmable Dual-RNAGuided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.337, pp.816-821, 2012.

H. Y. Lu, B. M. Bauman, S. Arjunaraja, B. Dorjbal, J. D. Milner et al., The CBM-opathiesA Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11BCL10-MALT1 Complex, Front Immunol, vol.9, p.2078, 2018.