S. Agarwal, R. Sane, and J. R. Ohlfest, The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain, J Pharmacol Exp Ther, vol.336, pp.223-256, 2011.

E. Allard, F. Hindre, and C. Passirani, 188 Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas, Eur J Nucl Med Mol Imaging, vol.35, pp.1838-1884, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00343438

E. Allard, N. T. Huynh, and A. Vessi-eres, Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model, Int J Pharm, vol.379, pp.317-340, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01230396

E. Allard, D. Jarnet, and A. Vessi-eres, Local delivery of ferrociphenol lipid nanocapsules followed by external radiotherapy as a synergistic treatment against intracranial 9L glioma xenograft, Pharm Res, vol.27, pp.56-64, 2010.

J. B. Andre, S. Nagpal, and D. S. Hippe, Cerebral blood flow changes in glioblastoma patients undergoing bevacizumab treatment are seen in both tumor and normal brain, Neuroradiol J, vol.28, pp.112-121, 2015.

J. Balzeau, M. Pinier, and R. Berges, The effect of functionalizing lipid nanocapsules with NFL-TBS.40-63 peptide on their uptake by glioblastoma cells, Biomaterials, vol.34, pp.3381-3390, 2013.

T. T. Batchelor, E. R. Gerstner, and K. E. Emblem, Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation, Proc Natl Acad Sci, vol.110, pp.19059-64, 2013.

T. T. Batchelor, A. G. Sorensen, and E. Di-tomaso, AZD2171, a panVEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients, Cancer Cell, vol.11, pp.83-95, 2007.

B. , A. Saulnier, P. Benoit, and J. P. , Active targeting of brain tumors using nanocarriers, Biomaterials, vol.28, pp.4947-67, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00198695

S. Benizri, L. Ferey, and B. Alies, Nucleoside-lipid-based nanocarriers for sorafenib delivery, Nanoscale Res Lett, vol.13, p.17, 2018.

M. L. Bond-i, C. Botto, and E. Amore, Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells, Int J Pharm, vol.493, pp.75-85, 2015.

Y. Boucher, M. Leunig, and R. K. Jain, Tumor angiogenesis and interstitial hypertension, Cancer Res, vol.56, pp.4264-4270, 1996.

M. S. Brose, C. T. Frenette, and S. M. Keefe, Management of sorafenib-related adverse events: a clinician's perspective, Semin Oncol, vol.41, pp.1-16, 2014.

E. Carra, F. Barbieri, and D. Marubbi, Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures, Cell Cycle Georget. Tex, vol.12, pp.491-500, 2013.

V. P. Chauhan, T. Stylianopoulos, and Y. Boucher, Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies, Annu Rev Chem Biomol Eng, vol.2, pp.281-98, 2011.

R. Chen, A. L. Cohen, and H. Colman, Targeted therapeutics in patients with high-grade gliomas: past, present, and future, Curr Treat Options Oncol, vol.17, p.42, 2016.

A. Cikankowitz, A. Clavreul, and C. , Characterization of the distribution, retention, and efficacy of internal radiation of 188 Re-lipid nanocapsules in an immunocompromised human glioblastoma model, J Neurooncol, vol.131, pp.49-58, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01451658

A. Clavreul, M. Pourbaghi-masouleh, and E. Roger, Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal?, J Exp Clin Cancer Res CR, vol.36, p.135, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01631360

E. F. Craparo, C. Sardo, and R. Serio, Galactosylated polymeric carriers for liver targeting of sorafenib, Int J Pharm, vol.466, pp.172-80, 2014.

F. Danhier, K. Messaoudi, and L. Lemaire, Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation, Int J Pharm, vol.481, pp.154-61, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392431

R. B. Den, M. Kamrava, and Z. Sheng, A phase I study of the combination of sorafenib with temozolomide and radiation therapy for the treatment of primary and recurrent high-grade gliomas, Int J Radiat Oncol Biol Phys, vol.85, pp.321-329, 2013.

S. Fellah, N. Girard, and O. Chinot, Early evaluation of tumoral response to antiangiogenic therapy by arterial spin labeling perfusion magnetic resonance imaging and susceptibility weighted imaging in a patient with recurrent glioblastoma receiving bevacizumab, JCO, vol.29, pp.308-319, 2011.

D. Y. Gao, T. T. Lin, and Y. C. Sung, CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer, Biomaterials, vol.67, pp.194-203, 2015.

A. Grillone, E. R. Riva, and A. Mondini, Active targeting of sorafenib: preparation, characterization, and in vitro testing of drug-loaded magnetic solid lipid nanoparticles, Adv Healthc Mater, vol.4, pp.1681-90, 2015.

M. R. Hassler, M. Ackerl, and B. Flechl, Sorafenib for patients with pretreated recurrent or progressive high-grade glioma: a retrospective, single-institution study, Anticancer Drugs, vol.25, pp.723-731, 2014.

B. Heurtault, P. Saulnier, and B. Pech, A novel phase inversionbased process for the preparation of lipid nanocarriers, Pharm Res, vol.19, pp.875-80, 2002.

S. Hirsj?-arvi, C. Belloche, and . Hindr-e-f, Tumour targeting of lipid nanocapsules grafted with cRGD peptides, Eur J Pharm Biopharm, vol.87, pp.152-161, 2014.

A. F. Hottinger, A. B. Aissa, and V. Espeli, Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma, Br J Cancer, vol.110, pp.2655-61, 2014.

J. Hureaux, F. Lagarce, and F. Gagnadoux, The adaptation of lipid nanocapsule formulations for blood administration in animals, Int J Pharm, vol.379, pp.266-275, 2009.

J. Hureaux, F. Lagarce, and F. Gagnadoux, Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice, Pharm Res, vol.27, pp.421-451, 2010.

N. T. Huynh, M. Morille, and J. Bejaud, Treatment of 9L gliosarcoma in rats by ferrociphenol-loaded lipid nanocapsules based on a passive targeting strategy via the EPR effect, Pharm Res, vol.28, pp.3189-98, 2011.

N. T. Huynh, C. Passirani, and E. Allard-vannier, Administrationdependent efficacy of ferrociphenol lipid nanocapsules for the treatment of intracranial 9L rat gliosarcoma, Int J Pharm, vol.423, pp.55-62, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01865009

N. T. Huynh, C. Passirani, and P. Saulnier, Lipid nanocapsules: a new platform for nanomedicine, Int J Pharm, vol.379, pp.201-210, 2009.

S. H. Hwang, J. Cha, and J. K. , Correlation of tumor size and metabolism with perfusion in hepatocellular carcinoma using dynamic contrast enhanced CT and F-18 FDG PET-CT, J Nucl Med, vol.56, p.1330, 2015.

R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, vol.307, pp.58-62, 2005.

R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy, Nat Med, vol.7, pp.987-989, 2001.

F. Kallinowski, K. H. Schlenger, and S. Runkel, Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts, Cancer Res, vol.49, pp.3759-3764, 1989.

R. Karim, C. Palazzo, and B. Evrard, Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art, J Control Release, vol.227, pp.23-37, 2016.

F. Kober, I. Iltis, and M. Izquierdo, High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradientecho imaging, Magn Reson Med, vol.51, pp.62-67, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02119122

A. L. Lain-e, A. Clavreul, and A. Rousseau, Inhibition of ectopic glioma tumor growth by a potent ferrocenyl drug loaded into stealth lipid nanocapsules, Nanomedicine Nanotechnol Biol Med, vol.10, pp.1667-1677, 2014.

A. L. Laine, N. T. Huynh, and A. Clavreul, Brain tumour targeting strategies via coated ferrociphenol lipid nanocapsules, Eur J Pharm Biopharm, vol.81, pp.690-693, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01877954

L. Roux, G. Moche, H. Nieto, and A. , Cytotoxicity and genotoxicity of lipid nanocapsules, Toxicol in Vitro, vol.41, pp.189-199, 2017.

E. Q. Lee, J. Kuhn, and K. R. Lamborn, Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02, NeuroOncol, vol.14, pp.1511-1518, 2012.

L. Lemaire, J. Nel, and F. Franconi, Perfluorocarbon-loaded lipid nanocapsules to assess the dependence of U87-human glioblastoma tumor pO 2 on in vitro expansion conditions, PloS One, vol.11, p.165479, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01393746

Y. J. Li, M. Dong, and F. M. Kong, Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics, Int J Pharm, vol.489, pp.83-90, 2015.

L. Lin, J. Cai, and C. Jiang, Recent advances in targeted therapy for glioma, Curr Med Chem, vol.24, pp.1365-1381, 2017.

T. T. Lin, D. Y. Gao, and Y. C. Liu, Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis, J Control Release, vol.221, pp.62-70, 2016.

J. Liu, B. Boonkaew, and J. Arora, Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma, J Pharm Sci, vol.104, pp.1187-1196, 2015.

Y. Liu, J. Yang, and X. Wang, In vitro and in vivo evaluation of redox-responsive sorafenib carrier nanomicelles synthesized from poly (acryic acid)-cystamine hydrochloride-D-a-tocopherol succinate, J Biomater Sci Polym Ed, vol.27, pp.1729-1747, 2016.

G. Lollo, M. Vincent, and G. Ullio-gamboa, Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma, Int J Pharm, vol.495, pp.972-980, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392247

J. Ma, S. Li, and K. Reed, Pharmacodynamic-mediated effects of the angiogenesis inhibitor SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xenograft models, J Pharmacol Exp Ther, vol.305, pp.833-839, 2003.

J. J. Miller and P. Y. Wen, Emerging targeted therapies for glioma, Expert Opin Emerg Drugs, vol.21, pp.441-452, 2016.

L. Mo, J. G. Song, and H. Lee, PEGylated hyaluronic acid-coated liposome for enhanced in vivo efficacy of sorafenib via active tumor cell targeting and prolonged systemic exposure, Nanomedicine Nanotechnol Biol Med, vol.14, pp.557-567, 2018.

A. C. Navis, A. Bourgonje, and P. Wesseling, Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2, PloS One, vol.8, p.58262, 2013.

M. Ndesendo, Advances in neurotherapeutic delivery technologies, OMICS International, 2015.

D. M. Peereboom, M. S. Ahluwalia, and X. Ye, NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme, Neuro-oncology, vol.15, pp.490-496, 2013.

R. Rajendran, W. Huang, and A. Tang, Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI, Cancer Med, vol.3, pp.47-60, 2014.

D. A. Reardon, J. J. Vredenburgh, and A. Desjardins, Effect of CYP3Ainducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma, J Neurooncol, vol.101, pp.57-66, 2011.

E. Roger, F. Lagarce, and J. P. Benoit, Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration, Eur J Pharm Biopharm, vol.79, pp.181-188, 2011.

M. Roger, A. Clavreul, and M. C. Venier-julienne, The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy, Biomaterials, vol.32, pp.2106-2116, 2011.

B. Saliou, O. Thomas, and N. Lautram, Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide, Eur J Pharm Sci, vol.50, pp.172-180, 2013.

S. Eh-edic, D. Chourpa, I. , and C. , Locoregional confinement and major clinical benefit of 188 Re-Loaded CXCR4-targeted nanocarriers in an orthotopic human to mouse model of glioblastoma, Theranostics, vol.7, pp.4517-4536, 2017.

M. D. Siegelin, C. M. Raskett, and C. A. Gilbert, Sorafenib exerts antiglioma activity in vitro and in vivo, Neurosci Lett, vol.478, pp.165-170, 2010.

A. C. Silva, S. G. Kim, and M. Garwood, Imaging blood flow in brain tumors using arterial spin labeling, Magn Reson Med, vol.44, pp.169-173, 2000.

A. G. Sorensen, K. E. Emblem, and P. Polaskova, Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion, Cancer Res, vol.72, pp.402-407, 2012.

R. Stupp, M. E. Hegi, and W. P. Mason, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol, vol.10, pp.459-466, 2009.

R. Stupp, W. P. Mason, and M. J. Van-den-bent, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N Engl J Med, vol.352, pp.987-996, 2005.

Y. Sun, N. O. Schmidt, and K. Schmidt, Perfusion MRI of U87 brain tumors in a mouse model, Magn Reson Med, vol.51, pp.893-899, 2004.

R. A. Towner, M. Ihnat, and D. Saunders, A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model, BMC Cancer, vol.15, p.522, 2015.

C. Vanpouille-box, F. Lacoeuille, and C. Belloche, Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with (188)re-lipid nanocapsules, Biomaterials, vol.32, pp.6781-6790, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00638699

S. Vinchon-petit, D. Jarnet, and A. Paillard, In vivo evaluation of intracellular drug-nanocarriers infused into intracranial tumours by convection-enhanced delivery: distribution and radiosensitisation efficacy, J Neurooncol, vol.97, pp.195-205, 2010.

W. Wang, W. Sivakumar, and S. Torres, Effects of convectionenhanced delivery of bevacizumab on survival of glioma-bearing animals, Neurosurg Focus, vol.38, p.8, 2015.

S. Wilhelm, C. Carter, and M. Lynch, Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nat Rev Drug Discov, vol.5, pp.835-844, 2006.

Y. Xiao, Y. Liu, and S. Yang, Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment, Colloids Surf B Biointerfaces, vol.141, pp.83-92, 2016.
DOI : 10.1016/j.colsurfb.2016.01.016

F. Yang, C. Brown, and R. Buettner, Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3, Mol Cancer Ther, vol.9, pp.953-962, 2010.

S. Yang, B. Zhang, and X. Gong, In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer, Int J Nanomedicine, vol.11, pp.2329-2343, 2016.

Y. C. Yang, J. Cai, and J. Yin, Heparin-functionalized Pluronic nanoparticles to enhance the antitumor efficacy of sorafenib in gastric cancers, Carbohydr Polym, vol.136, pp.782-790, 2016.

T. J. Yun, H. R. Cho, and S. H. Choi, Antiangiogenic effect of bevacizumab: Application of arterial spin-labeling perfusion MR imaging in a rat glioblastoma model, AJNR Am J Neuroradiol, vol.37, pp.1650-1656, 2016.

J. Zhang, J. Hu, and H. F. Chan, iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy, 2016.

, Nanomedicine Nanotechnol Biol Me, vol.12, pp.1303-1311

J. Zhang, T. Wang, and S. Mu, Biomacromolecule/lipid hybrid nanoparticles for controlled delivery of sorafenib in targeting hepatocellular carcinoma therapy, Nanomed, vol.12, pp.911-925, 2017.

L. Zhang, F. Gong, and F. Zhang, Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro, Int J Nanomedicine, vol.8, pp.1517-1524, 2013.

Z. Zhang, B. Niu, and J. Chen, The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer, Biomaterials, vol.35, pp.4565-4572, 2014.

J. Ziegler, A. Bastian, and M. Lerner, AG488 as a therapy against gliomas, Oncotarget, vol.8, pp.71833-71844, 2017.
DOI : 10.18632/oncotarget.18284

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=18284&path%5B%5D=58630

F. Zustovich, L. Landi, and G. Lombardi, Sorafenib plus daily lowdose temozolomide for relapsed glioblastoma: a phase II study, Anticancer Res, vol.33, pp.3487-3494, 2013.