A. Aboussekhra, R. Chanet, A. Adjiri, and F. Fabre, Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, 1992.

, Mol. Cell. Biol, vol.12, pp.3224-3234

M. Ajimura, . S.-h, H. Leem, and . Ogawa, Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae, Genetics, vol.133, pp.51-66, 1993.

E. Alani, R. Padmore, and N. Kleckner, Analysis of wildtype and rad5O mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination, Cell, vol.61, pp.419-436, 1990.

E. Alani, S. Subbiah, and N. Kleckner, The yeast RAD5O gene encodes a predicted 153-kd protein containing a purine nucleotide binding domain and two large heptad-repeat regions, Genetics, vol.122, pp.47-57, 1989.

J. D. Boeke, F. Lacroute, and G. R. Fink, A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance, Mol. Gen. Genet, vol.197, pp.345-346, 1984.

R. H. Borts, M. Lichten, and J. E. Haber, Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination, Genetics, vol.113, pp.551-567, 1986.

L. Cao, E. Alani, and N. Kleckner, A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae, Cell, vol.61, pp.1089-1101, 1990.

M. Carlson and D. Botstein, Two differentially regulated mRNAs with different 5' ends encode secreted and intracellular forms of yeast invertase, Cell, vol.28, pp.145-154, 1982.

G. M. Church and W. Gilbert, Genomic sequencing, Proc. Natl. Acad. Sci, vol.81, pp.1991-1995, 1984.

B. Connolly, C. I. White, and J. E. Haber, Physical monitoring of mating type switching in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.8, pp.2342-2349, 1988.
URL : https://hal.archives-ouvertes.fr/inserm-01907460

C. R. Contopoulou, V. E. Cook, and R. K. Mortimer, Analysis of DNA double strand breakage and repair using orthogonal field alternation gel electrophoresis, Yeast, vol.3, pp.71-76, 1987.

P. Detlof, M. A. White, and T. D. Petes, Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae, Genetics, vol.132, pp.113-123, 1992.

J. W. Drake, The molecular basis of mutation, 1979.

F. Fabre,

A. P. Feinberg and B. Vogelstein, A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem, vol.137, pp.266-267, 1984.

E. C. Friedberg, W. Siede, and A. J. Cooper, Cellular responses to DNA damage in yeast, The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, pp.147-192, 1991.

J. C. Game, Radiation sensitive mutants and repair in yeast, Yeast genetics, pp.109-137, 1983.

J. C. Game, T. J. Zamb, R. J. Braun, M. Resnick, and R. M. Roth, The role of radiation (rad) genes in meiotic recombination in yeast, Genetics, vol.94, pp.51-68, 1980.

S. Gottlieb, J. Wagstaff, and R. E. Esposito, Evidence for two pathways of meiotic intrachromosomal recombination in yeast, Proc. Natl. Acad. Sci. USA, vol.86, pp.7072-7076, 1989.

J. E. Haber, Mating-type gene switching in Saccharomyces cerevisiae, Trends Genet, vol.8, pp.446-452, 1992.

J. E. Haber and M. Hearn, RAD52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosome loss, Genetics, vol.111, pp.7-22, 1985.

J. E. Haber, B. L. Ray, J. M. Kolb, and C. I. White, Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast, Proc. Natl. Acad. Sci. USA, vol.90, pp.3363-3367, 1993.
URL : https://hal.archives-ouvertes.fr/inserm-01907439

R. Hamilton, C. K. Watanabe, and H. A. De-boer, Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs, Nucleic Acids Res, vol.15, pp.3581-3593, 1987.

R. H. Haynes and B. A. Kunz, DNA repair and mutagenesis in yeast, The molecular biology of the yeast Saccharomyces: life cycle and inheritance, pp.371-414, 1981.

I. Herskowitz, J. Rine, and J. Strathern, Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, pp.583-656, 1992.

K. S. Ho, Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae, Mutat. Res, vol.30, pp.327-334, 1975.

M. F. Hoekstra, T. Naughton, and R. E. Malone, Properties of spontaneous mitotic recombination occurring in the presence of the rad52-1 mutation of Saccharomyces cerevisiae, Genet. Res, vol.48, pp.9-17, 1986.

H. Ito, Y. Fukada, K. Murata, and A. Kimura, Transformation of intact yeast cells treated with alkali cations, J. Bacteriol, vol.153, pp.163-168, 1983.

E. Ivanov,

E. L. Ivanov, V. G. Korolev, and F. Fabre, XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination, Genetics, vol.132, pp.651-664, 1992.

J. A. Jackson and G. R. Fink, Gene conversion between duplicated genetic elements in yeast, Nature, vol.292, pp.306-311, 1981.

S. Klapholz and R. E. Esposito, Recombination and chromosome segregation during the single division meiosis in spol2-1 and spol3-1 diploids, Genetics, vol.96, pp.589-611, 1980.

D. E. Lea and C. A. Coulson, The distribution of the numbers of mutants in bacterial populations, J. Genet, vol.49, pp.264-284, 1948.

M. Lichten, C. Goyon, N. P. Schultes, D. Treco, J. W. Szostak et al., Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis, Proc. Natl. Acad. Sci. USA, vol.87, pp.7653-7657, 1990.

R. E. Malone, Multiple mutant analysis of recombination in yeast, Mol. Gen. Genet, vol.189, pp.405-412, 1983.

R. E. Malone, S. Bullard, M. Hermiston, R. Rieger, M. Cool et al., Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae, Genetics, vol.128, pp.79-88, 1991.

R. E. Malone and R. E. Esposito, The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast, Proc. Natl. Acad. Sci, vol.77, pp.503-507, 1980.

R. E. Malone and R. E. Esposito, 1:891-901. is not required for spontaneous mitotic recombination in yeast, Mol. Cell. Biol, vol.18, pp.111-116, 1981.

M. W. Mcdonnel, M. N. Simon, and F. W. Studier, Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels, J. Mol. Biol, vol.110, pp.119-146, 1977.

R. Mckee and C. W. Lawrence, Genetic analysis of gamma-ray mutagenesis in yeast. III. Double mutant strains, Mutat. Res, vol.70, pp.37-46, 1980.

J. A. Nickoloff, E. Y. Chen, and F. Heffron, A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast, Proc. Natl. Acad. Sci, vol.83, pp.7831-7835, 1986.

T. D. Petes, R. E. Malone, and L. S. Symington, The molecular and cellular biology of the yeast Saccharomyces, pp.407-521, 1991.

L. Prakash and S. Prakash, Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae, Genetics, vol.86, pp.33-55, 1977.

S. Prakash, L. Prakash, W. Burke, and B. A. Montelone, Effects of the RAD52 gene on recombination in Saccharomyces cerevisiae, Genetics, vol.94, pp.31-50, 1980.

B. L. Ray, C. I. White, and J. E. Haber, Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.11, pp.5372-5380, 1991.
URL : https://hal.archives-ouvertes.fr/inserm-01907452

W. E. Raymond and N. Kleckner, Expression of the yeast Saccharomyces cerevisiae RAD50 gene during meiosis: steady-state transcript levels rise and fall while steady-state protein levels remain constant, Mol. Gen. Genet, vol.238, pp.390-400, 1993.

R. A. Reenan and R. D. Kolodner, Characterization of insertion mutations in the Saccharomyces cerevisiae MSHI and MSH2 genes: evidence for separate mitochondrial and nuclear functions, Genetics, vol.132, pp.975-985, 1992.

M. A. Resnick and P. Martin, The repair of double-strand breaks in nuclear DNA of Saccharomyces cerevisiae and its genetic control, Mol. Gen. Genet, vol.143, pp.119-129, 1976.

M. Rose, P. Grisafi, and D. Botstein, Structure and function of the yeast URA3 gene: expression in E. coli, Gene, vol.29, pp.113-124, 1984.

M. D. Rose, P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink, A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector, Gene, vol.60, pp.237-243, 1987.

R. Rothstein, One step gene disruption in yeast, Methods Enzymol, vol.101, pp.202-211, 1983.

N. Rudin and J. E. Haber, Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences, Mol. Cell. Biol, vol.8, pp.3918-3928, 1988.

T. Saeki, I. Machida, and S. Nakai, Genetic control of diploid recovery after y-irradiation in the yeast Saccharomyces cerevisiae, Mutat. Res, vol.73, pp.251-265, 1980.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

P. M. Sharp and W. Li, The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res, vol.15, pp.1281-1295, 1987.

F. Sherman, G. R. Fink, and J. B. Hicks, Methods in yeast genetics: a laboratory manual, 1986.

A. Shinohara, H. Ogawa, and T. Ogawa, RadSl protein involved in repair and recombination in S. cerevisiae is a RecA-like protein, Cell, vol.69, pp.457-470, 1992.

D. Stinchcomb, C. Mann, and R. W. Davis, Centromeric DNA from Saccharomyces cerevisiae, J. Mol. Biol, vol.158, pp.157-179, 1982.

N. Sugawara and J. E. Haber, Characterization of doublestrand break-induced recombination: homology requirements and single-stranded DNA formation, Mol. Cell. Biol, vol.12, pp.563-575, 1992.

H. Sun, D. Treco, and J. W. Szostak, Extensive 3'-overhanging, single-stranded DNA associated with meiosis-specific doublestrand breaks at the ARG4 recombination initiation site, Cell, vol.64, pp.1155-1161, 1991.

N. G. Suslova and I. A. Zakharov, Genetic control of radiosensitivity in yeast. VII. Identification of genes conferring sensitivity to X-rays, Genetika, vol.6, pp.158-163, 1970.

J. W. Szostak, T. L. Orr-weaver, R. J. Rothstein, and F. W. Stahl, The double-strand-break repair model for recombination, Cell, vol.33, pp.25-35, 1983.

B. Weiffenbach and J. E. Haber, Homothallic mating type switching generates lethal chromosome breaks in rad52 strains of Saccharomyces cerevisiae, Mol. Cell. Biol, vol.1, pp.522-534, 1981.

C. I. White and J. E. Haber, Intermediates of recombination during mating type switching in Saccharomyces cerevisiae, EMBO J, vol.9, pp.663-673, 1990.
URL : https://hal.archives-ouvertes.fr/inserm-01907458

C. R. Wobbe and K. Struhl, Yeast and human TATAbinding proteins have nearly identical DNA sequence requirements for transcription in vitro, Mol. Cell. Biol, vol.10, pp.3859-3867, 1990.

K. S. Zaret and F. Sherman, DNA sequence required for efficient transcription termination in yeast, Cell, vol.28, pp.563-573, 1982.