T. Hassold, H. Hall, and P. Hunt, The origin of human aneuploidy: where we have been, where we are going, Hum Mol Genet, vol.16, issue.2, pp.203-208, 2007.

C. G. Bozza and W. P. Pawlowski, The cytogenetics of homologous chromosome pairing in meiosis in plants, Cytogenet Genome Res, vol.120, pp.313-319, 2008.

G. Moore and P. Shaw, Improving the chances of finding the right partner, Curr Opin Genet Dev, vol.19, pp.99-104, 2009.

K. Osman, J. D. Higgins, E. Sanchez-moran, S. J. Armstrong, and F. C. Franklin, Pathways to meiotic recombination in Arabidopsis thaliana, New Phytologist, vol.190, pp.523-544, 2011.

J. H. Tsai and B. D. Mckee, Homologous pairing and the role of pairing centers in meiosis, J Cell Sci, vol.124, pp.1955-1963, 2011.

M. Zetka, Homologue pairing, recombination and segregation in Caenorhabditis elegans, Genome Dyn, vol.5, pp.43-55, 2009.

H. Scherthan, Telomere attachment and clustering during meiosis, Cell Mol Life Sci, vol.64, pp.117-124, 2007.

A. Bardhan, H. Chuong, and D. S. Dawson, Meiotic cohesin promotes pairing of nonhomologous centromeres in early meiotic prophase, Molecular Biology of the Cell, vol.21, pp.1799-1809, 2010.

D. Obeso and D. S. Dawson, Temporal characterization of homologyindependent centromere coupling in meiotic prophase, PloS ONE, vol.5, 2010.

T. Tsubouchi, A. J. Macqueen, and G. S. Roeder, Initiation of meiotic chromosome synapsis at centromeres in budding yeast, Genes Dev, vol.22, pp.3217-3226, 2008.

T. Tsubouchi and G. S. Roeder, A synaptonemal complex protein promotes homology-independent centromere coupling, Science, vol.308, pp.870-873, 2005.

J. E. Falk, A. C. Chan, E. Hoffmann, and A. Hochwagen, A Mec1-and PP4dependent checkpoint couples centromere pairing to meiotic recombination, Developmental Cell, vol.19, pp.599-611, 2010.

E. Martinez-perez, P. Shaw, and G. Moore, The Ph1 locus is needed to ensure specific somatic and meiotic centromere association, Nature, vol.411, pp.204-207, 2001.

E. Martinez-perez, P. Shaw, S. Reader, L. Aragon-alcaide, and T. Miller, Homologous chromosome pairing in wheat, J Cell Sci, vol.112, pp.1761-1769, 1999.

A. Ronceret, M. P. Doutriaux, I. N. Golubovskaya, and W. P. Pawlowski, PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus, Proc Natl Acad Sci U S A, vol.106, pp.20121-20126, 2009.

M. N. Stewart and D. S. Dawson, Changing partners: moving from non-homologous to homologous centromere pairing in meiosis, Trends in Genetics, vol.24, pp.564-573, 2008.

. Arabidopsis-genome-initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, vol.408, pp.796-815, 2000.

G. P. Copenhaver, K. Nickel, T. Kuromori, M. I. Benito, and S. Kaul, Genetic definition and sequence analysis of Arabidopsis centromeres, Science, vol.286, pp.2468-2474, 1999.

R. Martienssen, Transposons, DNA methylation and gene control, Trends in genetics : TIG, vol.14, pp.263-264, 1998.

E. K. Round, S. K. Flowers, and E. J. Richards, Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure, Genome Research, vol.7, pp.1045-1053, 1997.

K. Nagaki, J. Walling, C. Hirsch, J. Jiang, and M. Murata, Structure and evolution of plant centromeres, Progress in Molecular and Subcellular Biology, vol.48, pp.153-179, 2009.

D. V. Bugreev, R. J. Pezza, O. M. Mazina, O. N. Voloshin, and R. D. Camerini-otero, The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis, Nature Structural & Molecular Biology, vol.18, pp.56-60, 2011.

M. J. Neale and S. Keeney, Clarifying the mechanics of DNA strand exchange in meiotic recombination, Nature, vol.442, pp.153-158, 2006.

J. A. Carballo, A. L. Johnson, S. G. Sedgwick, and R. S. Cha, Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination, Cell, vol.132, pp.758-770, 2008.

H. Niu, L. Wan, B. Baumgartner, D. Schaefer, and J. Loidl, Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1, Molecular Biology of the Cell, vol.16, pp.5804-5818, 2005.

H. C. Ho and S. M. Burgess, Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosis, PLoS Genet, vol.7, p.1002351, 2011.

V. Busygina, D. Saro, G. Williams, W. K. Leung, and A. F. Say, Novel attributes of Hed1 affect dynamics and activity of the Rad51 presynaptic filament during meiotic recombination, Journal of Biological Chemistry, vol.287, pp.1566-1575, 2011.

V. Busygina, M. G. Sehorn, I. Y. Shi, H. Tsubouchi, and G. S. Roeder, Hed1 regulates Rad51-mediated recombination via a novel mechanism, Genes & Development, vol.22, pp.786-795, 2008.

F. Couteau, F. Belzile, C. Horlow, O. Grandjean, and D. Vezon, Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis, Plant Cell, vol.11, pp.1623-1634, 1999.

M. Pradillo, E. Lopez, R. Linacero, C. Romero, and N. Cunado, Together yes, but not coupled: new insights into the roles of RAD51 and DMC1 in plant meiotic recombination, 2011.

E. Sanchez-moran, J. L. Santos, G. H. Jones, and F. C. Franklin, ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis, Genes Dev, vol.21, pp.2220-2233, 2007.

W. Li, C. Chen, U. Markmann-mulisch, L. Timofejeva, and E. Schmelzer, The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis, Proc Natl Acad Sci U S A, vol.101, pp.10596-10601, 2004.

N. Siaud, E. Dray, I. Gy, E. Gerard, and N. Takvorian, Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1, EMBO J, vol.23, pp.1392-1401, 2004.

S. Badie, C. Liao, M. Thanasoula, P. Barber, and M. A. Hill, RAD51C facilitates checkpoint signaling by promoting CHK2 phosphorylation, J Cell Biol, vol.185, pp.587-600, 2009.

D. K. Bishop, U. Ear, A. Bhattacharyya, C. Calderone, and M. Beckett, Xrcc3 is required for assembly of Rad51 complexes in vivo, J Biol Chem, vol.273, pp.21482-21488, 1998.

J. Y. Masson, M. C. Tarsounas, A. Z. Stasiak, A. Stasiak, and R. Shah, Identification and purification of two distinct complexes containing the five RAD51 paralogs, Genes Dev, vol.15, pp.3296-3307, 2001.

M. Tarsounas, A. A. Davies, and S. C. West, RAD51 localization and activation following DNA damage, Philos Trans R Soc Lond B Biol Sci, vol.359, pp.87-93, 2004.

L. R. Van-veelen, T. Cervelli, M. W. Van-de-rakt, A. F. Theil, and J. Essers, Analysis of ionizing radiation-induced foci of DNA damage repair proteins, Mutat Res, vol.574, pp.22-33, 2005.

L. R. Van-veelen, J. Essers, M. W. Van-de-rakt, H. Odijk, and A. Pastink, Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52, Mutat Res, vol.574, pp.34-49, 2005.

S. Kuznetsov, M. Pellegrini, K. Shuda, O. Fernandez-capetillo, and Y. Liu, RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females, The Journal of Cell Biology, vol.176, pp.581-592, 2007.

S. G. Kuznetsov, D. C. Haines, B. K. Martin, and S. K. Sharan, Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice, Cancer Research, vol.69, pp.863-872, 2009.

S. K. Sharan and S. G. Kuznetsov, Resolving RAD51C function in late stages of homologous recombination, Cell Division, vol.2, p.15, 2007.

K. Abe, K. Osakabe, S. Nakayama, M. Endo, and A. Tagiri, Arabidopsis RAD51C gene is important for homologous recombination in meiosis and mitosis, Plant Physiol, vol.139, pp.896-908, 2005.

J. Y. Bleuyard, M. E. Gallego, F. Savigny, and C. I. White, Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair, Plant J, vol.41, pp.533-545, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00595808

J. Y. Bleuyard, M. E. Gallego, and C. I. White, The atspo11-1 mutation rescues atxrcc3 meiotic chromosome fragmentation, Plant Mol Biol, vol.56, pp.217-224, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00595809

J. Y. Bleuyard and C. I. White, The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis, EMBO J, vol.23, pp.439-449, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00595813

W. Li, X. Yang, Z. Lin, L. Timofejeva, and R. Xiao, The AtRAD51C gene is required for normal meiotic chromosome synapsis and double-stranded break repair in Arabidopsis, Plant Physiol, vol.138, pp.965-976, 2005.

Y. Liu, J. Y. Masson, R. Shah, P. O'regan, and S. C. West, RAD51C is required for Holliday junction processing in mammalian cells, Science, vol.303, pp.243-246, 2004.

Y. Liu, M. Tarsounas, P. O'regan, and S. C. West, Role of RAD51C and XRCC3 in genetic recombination and DNA repair, J Biol Chem, vol.282, pp.1973-1979, 2007.

J. Vignard, T. Siwiec, L. Chelysheva, N. Vrielynck, and F. Gonord, The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana, PLoS Genet, vol.3, 2007.

S. J. Armstrong, F. C. Franklin, and G. H. Jones, Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana, J Cell Sci, vol.114, pp.4207-4217, 2001.

P. Fransz, S. Armstrong, C. Alonso-blanco, T. C. Fischer, and R. A. Torres-ruiz, Cytogenetics for the model system Arabidopsis thaliana, Plant J, vol.13, pp.867-876, 1998.

M. Pradillo and J. L. Santos, The template choice decision in meiosis: is the sister important, Chromosoma, vol.120, pp.447-454, 2011.

A. F. Dernburg, K. Mcdonald, G. Moulder, R. Barstead, and M. Dresser, Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis, Cell, vol.94, pp.387-398, 1998.

K. S. Mckim, B. L. Green-marroquin, J. J. Sekelsky, G. Chin, and C. Steinberg, Meiotic synapsis in the absence of recombination, Science, vol.279, pp.876-878, 1998.

H. Scherthan, A bouquet makes ends meet, Nat Rev Mol Cell Biol, vol.2, pp.621-627, 2001.

B. Kemp, R. M. Boumil, M. N. Stewart, and D. S. Dawson, A role for centromere pairing in meiotic chromosome segregation, Genes Dev, vol.18, pp.1946-1951, 2004.

S. Takeo, C. M. Lake, E. Morais-de-sa, C. E. Sunkel, and R. S. Hawley, Synaptonemal complex-dependent centromeric clustering and the initiation of synapsis in Drosophila oocytes, Curr Biol, vol.21, pp.1845-1851, 2011.

N. S. Tanneti, K. Landy, E. F. Joyce, and K. S. Mckim, A Pathway for Synapsis Initiation during Zygotene in Drosophila Oocytes, Curr Biol, vol.21, pp.1852-1857, 2011.

K. Church and P. B. Moens, Centromere behavior during interphase and meiotic prophase in Allium fistulosum from 3-D, EM reconstruction, Chromosoma, vol.56, pp.249-263, 1976.

X. Cai, F. Dong, R. E. Edelmann, and C. A. Makaroff, The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing, J Cell Sci, vol.116, pp.2999-3007, 2003.

X. Yang, K. A. Boateng, L. Strittmatter, R. Burgess, and C. A. Makaroff, Arabidopsis separase functions beyond the removal of sister chromatid cohesion during meiosis, Plant Physiol, vol.151, pp.323-333, 2009.

X. Yang, L. Timofejeva, H. Ma, and C. A. Makaroff, The Arabidopsis SKP1 homolog ASK1 controls meiotic chromosome remodeling and release of chromatin from the nuclear membrane and nucleolus, J Cell Sci, vol.119, pp.3754-3763, 2006.

N. Y. Roberts, K. Osman, and S. J. Armstrong, Telomere distribution and dynamics in somatic and meiotic nuclei of Arabidopsis thaliana, Cytogenet Genome Res, vol.124, pp.193-201, 2009.
DOI : 10.1159/000218125

N. Bhalla and A. F. Dernburg, Prelude to a division, Annual Review of Cell and Developmental Biology, vol.24, pp.397-424, 2008.
DOI : 10.1146/annurev.cellbio.23.090506.123245

URL : http://europepmc.org/articles/pmc4435778?pdf=render

R. A. Howard-till, A. Lukaszewicz, and J. Loidl, The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena, PLoS Genet, vol.7, p.1001359, 2011.

N. Hunter and N. Kleckner, The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination, Cell, vol.106, pp.59-70, 2001.

M. Shinohara, S. L. Gasior, D. K. Bishop, and A. Shinohara, Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination, Proc Natl Acad Sci U S A, vol.97, pp.10814-10819, 2000.
DOI : 10.1073/pnas.97.20.10814

URL : http://www.pnas.org/content/97/20/10814.full.pdf

A. F. Dernburg, J. W. Sedat, and R. S. Hawley, Direct evidence of a role for heterochromatin in meiotic chromosome segregation, Cell, vol.86, pp.135-146, 1996.

G. H. Karpen, M. H. Le, and H. Le, Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis, Science, vol.273, pp.118-122, 1996.

R. K. Dawe, J. W. Sedat, D. A. Agard, and W. Z. Cande, Meiotic chromosome pairing in maize is associated with a novel chromatin organization, Cell, vol.76, pp.901-912, 1994.
DOI : 10.1016/0092-8674(94)90364-6

A. J. Macqueen and A. M. Villeneuve, Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2, Genes Dev, vol.15, pp.1674-1687, 2001.

I. Colas, P. Shaw, P. Prieto, M. Wanous, and W. Spielmeyer, Effective chromosome pairing requires chromatin remodeling at the onset of meiosis, Proc Natl Acad Sci U S A, vol.105, pp.6075-6080, 2008.

P. Prieto, G. Moore, and S. Reader, Control of conformation changes associated with homologue recognition during meiosis, Theor Appl Genet, vol.111, pp.505-510, 2005.

P. Prieto, P. Shaw, and G. Moore, Homologue recognition during meiosis is associated with a change in chromatin conformation, Nat Cell Biol, vol.6, pp.906-908, 2004.

A. Pecinka, V. Schubert, A. Meister, G. Kreth, and M. Klatte, Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes, Chromosoma, vol.113, pp.258-269, 2004.

K. J. Ross, P. Fransz, and G. H. Jones, A light microscopic atlas of meiosis in Arabidopsis thaliana, Chromosome Res, vol.4, pp.507-516, 1996.

C. Kerzendorfer, J. Vignard, A. Pedrosa-harand, T. Siwiec, and S. Akimcheva, The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination, J Cell Sci, vol.119, pp.2486-2496, 2006.

A. P. Panoli, M. Ravi, J. Sebastian, B. Nishal, and T. V. Reddy, AtMND1 is required for homologous pairing during meiosis in Arabidopsis, BMC Mol Biol, vol.7, p.24, 2006.

P. Stronghill, N. Pathan, H. Ha, E. Supijono, and C. Hasenkampf, Ahp2 (Hop2) function in Arabidopsis thaliana (Ler) is required for stabilization of close alignment and synaptonemal complex formation except for the two short arms that contain nucleolus organizer regions, Chromosoma, vol.119, pp.443-458, 2010.

C. Schommer, A. Beven, T. Lawrenson, P. Shaw, and R. Sablowski, AHP2 is required for bivalent formation and for segregation of homologous chromosomes in Arabidopsis meiosis, Plant J, vol.36, pp.1-11, 2003.

M. Grelon, D. Vezon, G. Gendrot, and G. Pelletier, AtSPO11-1 is necessary for efficient meiotic recombination in plants, EMBO J, vol.20, pp.589-600, 2001.
DOI : 10.1093/emboj/20.3.589

URL : http://europepmc.org/articles/pmc133473?pdf=render

J. Martinez-zapater, E. M. Somerville, and C. , A highly repeated DNA sequence in Arabidopsis thaliana, Molec Gen Genet, vol.204, pp.417-423, 1986.
DOI : 10.1007/bf00331018

M. Lysak, P. Fransz, and I. Schubert, Cytogenetic analyses of Arabidopsis, Methods Mol Biol, vol.323, pp.173-186, 2006.

W. P. Pawlowski, I. N. Golubovskaya, L. Timofejeva, R. B. Meeley, and W. F. Sheridan, Coordination of meiotic recombination, pairing, and synapsis by PHS1, Science, vol.303, pp.89-92, 2004.
DOI : 10.1126/science.1091110

J. Y. Bleuyard, M. E. Gallego, and C. I. White, Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination, Chromosoma, vol.113, pp.197-203, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00595811

X. Yang, K. A. Boateng, L. Yuan, S. Wu, and T. I. Baskin, The radially swollen 4 separase mutation of Arabidopsis thaliana blocks chromosome disjunction and disrupts the radial microtubule system in meiocytes, PLoS ONE, vol.6, 2011.

K. A. Boateng, X. Yang, F. Dong, H. A. Owen, and C. A. Makaroff, SWI1 is required for meiotic chromosome remodeling events, Mol Plant, vol.1, pp.620-633, 2008.
DOI : 10.1093/mp/ssn030

URL : https://doi.org/10.1093/mp/ssn030

R. Mercier, S. J. Armstrong, C. Horlow, N. P. Jackson, and C. A. Makaroff, The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis, Development, vol.130, pp.3309-3318, 2003.