M. M. Cox, M. F. Goodman, K. N. Kreuzer, D. J. Sherratt, and S. J. Sandler, The importance of repairing stalled replication forks, Nature, vol.404, pp.37-41, 2000.

S. J. Whitaker, DNA damage by drugs and radiation: what is important and how is it measured?, European journal of cancer, vol.28, pp.273-276, 1992.

W. Heyer, K. T. Ehmsen, and J. Liu, Regulation of homologous recombination in eukaryotes, Annual review of genetics, vol.44, pp.113-139, 2010.

W. M. Waterworth, G. E. Drury, C. M. Bray, and C. E. West, Repairing breaks in the plant genome: the importance of keeping it together, The New phytologist, vol.192, pp.805-822, 2011.

J. Y. Masson, M. C. Tarsounas, A. Z. Stasiak, A. Stasiak, and R. Shah, Identification and purification of two distinct complexes containing the five RAD51 paralogs, Genes & development, vol.15, pp.3296-3307, 2001.

L. Krejci, V. Altmannova, M. Spirek, and X. Zhao, Homologous recombination and its regulation, Nucleic acids research, vol.40, pp.5795-5818, 2012.

N. Suwaki, K. Klare, and M. Tarsounas, RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis, Seminars in cell & developmental biology, vol.22, pp.898-905, 2011.

J. Thacker, The RAD51 gene family, genetic instability and cancer, Cancer letters, vol.219, pp.125-135, 2005.

J. Liu, L. Renault, X. Veaute, F. Fabre, and H. Stahlberg, Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation, Nature, vol.479, pp.245-248, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00881580

K. A. Bernstein, R. Reid, I. Sunjevaric, K. Demuth, and R. C. Burgess, The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase, Molecular biology of the cell, vol.22, pp.1599-1607, 2011.

V. Martin, C. Chahwan, H. Gao, V. Blais, and J. Wohlschlegel, Sws1 is a conserved regulator of homologous recombination in eukaryotic cells, EMBO J, vol.25, pp.2564-2574, 2006.

H. Sasanuma, M. S. Tawaramoto, J. P. Lao, H. Hosaka, and E. Sanda, A new protein complex promoting the assembly of Rad51 filaments, Nature communications, vol.4, p.1676, 2013.

E. Shor, J. Weinstein, and R. Rothstein, A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair, Genetics, vol.169, pp.1275-1289, 2005.

H. W. Mankouri, H. P. Ngo, and I. D. Hickson, Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3, Mol Biol Cell, vol.18, pp.4062-4073, 2007.

S. Godin, A. Wier, F. Kabbinavar, D. S. Bratton-palmer, and H. Ghodke, The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55Rad57 to mediate error-free recombination, Nucleic acids research, vol.41, pp.4525-4534, 2013.

Z. She, Z. Q. Gao, Y. Liu, W. J. Wang, and G. F. Liu, Structural and SAXS analysis of the budding yeast SHU-complex proteins, FEBS Lett, vol.586, pp.2306-2312, 2012.

Y. Tao, X. Li, Y. Liu, J. Ruan, and S. Qi, Structural analysis of Shu proteins reveals a DNA binding role essential for resisting damage, J Biol Chem, vol.287, pp.20231-20239, 2012.

T. Liu, L. Wan, Y. Wu, J. Chen, and J. Huang, ) hSWS1.SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair, J Biol Chem, vol.286, pp.41758-41766, 2011.

J. Bleuyard, M. E. Gallego, and C. I. White, Recent advances in understanding of the DNA double-strand break repair machinery of plants, DNA repair, vol.5, pp.1-12, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00595807

Y. Karpenshif and K. A. Bernstein, From yeast to mammals: recent advances in genetic control of homologous recombination, DNA Repair (Amst), vol.11, pp.781-788, 2012.

B. C. Godthelp, W. W. Wiegant, A. Van-duijn-goedhart, O. D. Schä-rer, and P. Van-buul, Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability, Nucleic acids research, vol.30, pp.2172-2182, 2002.

M. Takata, M. S. Sasaki, S. Tachiiri, T. Fukushima, and E. Sonoda, Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs, Molecular and cellular biology, vol.21, pp.2858-2866, 2001.

M. Takata, M. S. Sasaki, E. Sonoda, T. Fukushima, and C. Morrison, The Rad51 paralog Rad51B promotes homologous recombinational repair, Molecular and cellular biology, vol.20, pp.6476-6482, 2000.
DOI : 10.1128/mcb.20.17.6476-6482.2000

URL : https://mcb.asm.org/content/20/17/6476.full.pdf

R. D. Johnson, N. Liu, and M. Jasin, Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination, Nature, vol.401, pp.397-399, 1999.

A. J. Pierce, R. D. Johnson, L. H. Thompson, and M. Jasin, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes & development, vol.13, pp.2633-2638, 1999.

N. Liu, J. E. Lamerdin, R. S. Tebbs, D. Schild, and J. D. Tucker, XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages, Molecular cell, vol.1, pp.783-793, 1998.
DOI : 10.1016/s1097-2765(00)80078-7

URL : https://doi.org/10.1016/s1097-2765(00)80078-7

R. S. Tebbs, Y. Zhao, J. D. Tucker, J. B. Scheerer, and M. J. Siciliano, Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.6354-6358, 1995.

B. Deans, C. S. Griffin, M. Maconochie, and J. Thacker, Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice, The EMBO journal, vol.19, pp.6675-6685, 2000.
DOI : 10.1093/emboj/19.24.6675

URL : http://emboj.embopress.org/content/19/24/6675.full.pdf

S. G. Kuznetsov, D. C. Haines, B. K. Martin, and S. K. Sharan, Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice, Cancer Res, vol.69, pp.863-872, 2009.

D. L. Pittman and J. C. Schimenti, Midgestation lethality in mice deficient for the RecA-related gene, Rad51d/Rad51l3, Genesis, vol.26, pp.167-173, 2000.

Z. Shu, S. Smith, L. Wang, M. C. Rice, and E. B. Kmiec, Disruption of muREC2/ RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53, Molecular and cellular biology, vol.19, pp.8686-8693, 1999.

J. Bleuyard and C. I. White, The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis, The EMBO journal, vol.23, pp.439-449, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00595813

W. Li, X. Yang, Z. Lin, L. Timofejeva, and R. Xiao, The AtRAD51C gene is required for normal meiotic chromosome synapsis and double-stranded break repair in Arabidopsis, Plant physiology, vol.138, pp.965-976, 2005.

N. Liu, D. Schild, M. P. Thelen, and L. H. Thompson, Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells, Nucleic acids research, vol.30, pp.1009-1015, 2002.

K. A. Miller, D. Sawicka, D. Barsky, and J. S. Albala, Domain mapping of the Rad51 paralog protein complexes, Nucleic acids research, vol.32, pp.169-178, 2004.

K. A. Miller, D. M. Yoshikawa, I. R. Mcconnell, R. Clark, and D. Schild, RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51, The Journal of biological chemistry, vol.277, pp.8406-8411, 2002.

K. Osakabe, K. Abe, H. Yamanouchi, T. Takyuu, and T. Yoshioka, Arabidopsis Rad51B is important for double-strand DNA breaks repair in somatic cells, Plant molecular biology, vol.57, pp.819-833, 2005.
DOI : 10.1007/s11103-005-2187-1

K. Osakabe, T. Yoshioka, H. Ichikawa, and S. Toki, Molecular cloning and characterization of RAD51-like genes from Arabidopsis thaliana, Plant molecular biology, vol.50, pp.71-81, 2002.

D. Schild, Y. C. Lio, D. W. Collins, T. Tsomondo, and D. J. Chen, Evidence for simultaneous protein interactions between human Rad51 paralogs, The Journal of biological chemistry, vol.275, pp.16443-16449, 2000.
DOI : 10.1074/jbc.m001473200

URL : http://www.jbc.org/content/275/22/16443.full.pdf

C. Wiese, D. W. Collins, J. S. Albala, L. H. Thompson, and A. Kronenberg, Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells, Nucleic acids research, vol.30, pp.1001-1008, 2002.

S. Badie, C. Liao, M. Thanasoula, P. Barber, and M. A. Hill, RAD51C facilitates checkpoint signaling by promoting CHK2 phosphorylation, The Journal of cell biology, vol.185, pp.587-600, 2009.
DOI : 10.1083/jcb.200811079

URL : http://jcb.rupress.org/content/185/4/587.full.pdf

M. A. Brenneman, B. M. Wagener, C. A. Miller, C. Allen, and J. A. Nickoloff, XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination, Molecular cell, vol.10, pp.387-395, 2002.

J. Chun, E. S. Buechelmaier, and S. N. Powell, Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway, Molecular and cellular biology, vol.33, pp.387-395, 2013.

O. Da-ines, F. Degroote, S. Amiard, C. Goubely, and M. E. Gallego, Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in Arabidopsis thaliana, The Plant Journal, vol.74, pp.959-970, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01907384

Y. Liu, J. Masson, R. Shah, P. O'regan, and S. C. West, RAD51C is required for Holliday junction processing in mammalian cells, Science, vol.303, pp.243-246, 2004.

Y. Liu, M. Tarsounas, P. O'regan, and S. C. West, Role of RAD51C and XRCC3 in genetic recombination and DNA repair, The Journal of biological chemistry, vol.282, pp.1973-1979, 2007.

G. Nagaraju, A. Hartlerode, A. Kwok, G. Chandramouly, and R. Scully, XRCC2 and XRCC3 regulate the balance between short-and long-tract gene conversions between sister chromatids, Molecular and cellular biology, vol.29, pp.4283-4294, 2009.

A. Rodrigue, Y. Coulombe, K. Jacquet, J. P. Gagne, and C. Roques, The RAD51 paralogs ensure cellular protection against mitotic defects and aneuploidy, J Cell Sci, vol.126, pp.348-359, 2013.

S. A. Compton, S. Ozgur, and J. D. Griffith, Ring-shaped Rad51 paralog protein complexes bind Holliday junctions and replication forks as visualized by electron microscopy, J Biol Chem, vol.285, pp.13349-13356, 2010.

H. Yokoyama, N. Sarai, W. Kagawa, R. Enomoto, and T. Shibata, Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex, Nucleic acids research, vol.32, pp.2556-2565, 2004.

E. L. Ivanov, N. Sugawara, J. Fishman-lobell, and J. E. Haber, Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae, Genetics, vol.142, pp.693-704, 1996.

W. Y. Mansour, S. Schumacher, R. Rosskopf, T. Rhein, and F. Schmidt-petersen, Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks, Nucleic Acids Res, vol.36, pp.4088-4098, 2008.

N. Roth, J. Klimesch, S. Dukowic-schulze, M. Pacher, and A. Mannuss, The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells, The Plant journal, vol.72, pp.781-790, 2012.

J. M. Stark, A. J. Pierce, J. Oh, A. Pastink, and M. Jasin, Genetic steps of mammalian homologous repair with distinct mutagenic consequences, Mol Cell Biol, vol.24, pp.9305-9316, 2004.

B. O. Krogh and L. S. Symington, Recombination proteins in yeast, Annual review of genetics, vol.38, pp.233-271, 2004.

J. P. Mcdonald and R. Rothstein, Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination, Genetics, vol.137, pp.393-405, 1994.

A. M. Mozlin, C. W. Fung, and L. S. Symington, Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination, Genetics, vol.178, pp.113-126, 2008.

N. Orel, A. Kyryk, and H. Puchta, Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome, The Plant Journal, vol.35, pp.604-612, 2003.

T. Cermak, E. L. Doyle, M. Christian, L. Wang, and Y. Zhang, Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic acids research, vol.39, p.82, 2011.

M. Heacock, E. Spangler, K. Riha, J. Puizina, and D. E. Shippen, Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining, The EMBO journal, vol.23, pp.2304-2313, 2004.

J. C. Miller, S. Tan, G. Qiao, K. A. Barlow, and J. Wang, A TALE nuclease architecture for efficient genome editing, Nature biotechnology, vol.29, pp.143-148, 2011.

H. Puchta, The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution, Journal of experimental botany, vol.56, pp.1-14, 2005.

S. Salomon and H. Puchta, Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells, The EMBO journal, vol.17, pp.6086-6095, 1998.

A. Malkova, E. L. Ivanov, and J. E. Haber, Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication, Proc Natl Acad Sci, pp.7131-7136, 1996.

K. Watanabe, M. Pacher, S. Dukowic, V. Schubert, and H. Puchta, The Structural Maintenance of Chromosomes 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana, Plant Cell, vol.21, pp.2688-2699, 2009.

O. Da-ines, F. Degroote, C. Goubely, S. Amiard, and M. E. Gallego, Meiotic Recombination in Arabidopsis Is Catalysed by DMC1, with RAD51 Playing a Supporting Role, PLoS genetics, vol.9, p.1003787, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01907382

Y. Yonetani, H. Hochegger, E. Sonoda, S. Shinya, and H. Yoshikawa, Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage, Nucleic acids research, vol.33, pp.4544-4552, 2005.

Y. C. Lio, A. V. Mazin, S. C. Kowalczykowski, and D. J. Chen, Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro, J Biol Chem, vol.278, pp.2469-2478, 2003.

H. Kurumizaka, S. Ikawa, M. Nakada, R. Enomoto, and W. Kagawa, Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex, J Biol Chem, vol.277, pp.14315-14320, 2002.

S. Sigurdsson, S. Van-komen, W. Bussen, D. Schild, and J. S. Albala, Mediator function of the human Rad51B-Rad51C complex in Rad51/RPAcatalyzed DNA strand exchange, Genes Dev, vol.15, pp.3308-3318, 2001.

M. Tarsounas, P. Munoz, A. Claas, P. G. Smiraldo, and D. L. Pittman, Telomere maintenance requires the RAD51D recombination/repair protein, Cell, vol.117, pp.337-347, 2004.
DOI : 10.1016/s0092-8674(04)00337-x

URL : https://doi.org/10.1016/s0092-8674(04)00337-x

F. L. Lin, K. Sperle, and N. Sternberg, Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process, Molec Cell Biol, vol.4, pp.1020-1034, 1984.

F. Prado and A. Aguilera, Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes, Genetics, vol.139, pp.109-123, 1995.

J. Bleuyard, M. E. Gallego, F. Savigny, and C. I. White, Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair, The Plant Journal, vol.41, pp.533-545, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00595808

F. Fauser, N. Roth, M. Pacher, G. Ilg, and R. Sánchez-fernández, In planta gene targeting, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.7535-7540, 2012.
DOI : 10.1073/pnas.1202191109

URL : http://www.pnas.org/content/109/19/7535.full.pdf

M. D. Curtis and U. Grossniklaus, A gateway cloning vector set for highthroughput functional analysis of genes in planta, Plant physiology, vol.133, pp.462-469, 2003.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, The Plant Journal, vol.16, pp.735-743, 1998.

M. E. Gallego and C. I. White, RAD50 function is essential for telomere maintenance in Arabidopsis, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.1711-1716, 2001.
DOI : 10.1073/pnas.98.4.1711

URL : https://hal.archives-ouvertes.fr/inserm-00595834