R. O. Abuodeh, M. J. Orbach, M. A. Mandel, A. Das, and J. N. Galgiani, Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens, J. Infect. Dis, vol.181, pp.2106-2110, 2000.

A. Ahmad, A. R. Robinson, A. Duensing, E. Van-drunen, H. B. Beverloo et al., ERCC1-XPF endonuclease facilitates DNA double-strand break repair, Mol. Cell. Biol, vol.28, pp.5082-5092, 2008.
DOI : 10.1128/mcb.00293-08

URL : https://mcb.asm.org/content/28/16/5082.full.pdf

D. E. Akiyoshi, H. Klee, R. M. Amasino, E. W. Nester, and M. P. Gordon, T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis, Proc. Natl Acad. Sci. USA, vol.81, pp.5994-5998, 1984.

A. Anand, A. Krichevsky, S. Schornack, T. Lahaye, T. Tzfira et al., Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants, Plant Cell, vol.19, pp.1695-1708, 2007.
DOI : 10.1105/tpc.106.042903

URL : http://www.plantcell.org/content/plantcell/19/5/1695.full.pdf

H. Van-attikum, P. Bundock, and P. J. Hooykaas, Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration, EMBO J, vol.20, pp.6550-6558, 2001.

H. Attikum, P. Bundock, R. M. Overmeer, L. Y. Lee, S. B. Gelvin et al., The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA, Nucleic Acids Res, vol.31, pp.4247-4255, 2003.

M. Audebert, B. Salles, and P. Calsou, Involvement of poly (ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining, J. Biol. Chem, vol.279, pp.55117-55126, 2004.

M. Audebert, B. Salles, and P. Calsou, Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway, Biochem. Biophys. Res. Commun, vol.369, pp.982-988, 2008.

N. Bechtold and G. Pelletier, In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration, Methods Mol. Biol, vol.82, pp.259-266, 1998.
DOI : 10.1007/978-3-642-79247-2_3

N. Bechtold, B. Jaudeau, S. Jolivet, B. Maba, D. Vezon et al., The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana, Genetics, vol.155, pp.1875-1887, 2000.

J. Y. Bleuyard, M. E. Gallego, F. Savigny, and C. I. White, Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair, Plant J, vol.41, pp.533-545, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00595808

J. Y. Bleuyard, M. E. Gallego, and C. I. White, Recent advances in understanding of the DNA double-strand break repair machinery of plants, DNA Repair, vol.5, pp.1-12, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00595807

A. J. Bogdanove and D. F. Voytas, TAL effectors: customizable proteins for DNA targeting, Science, vol.333, pp.1843-1846, 2011.
DOI : 10.1126/science.1204094

S. Buck, P. Windels, M. Loose, and A. Depicker, Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable b-glucuronidase accumulation levels, Cell. Mol. Life Sci, vol.61, pp.2632-2645, 2004.

P. Bundock and P. J. Hooykaas, Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination, Proc. Natl Acad. Sci. USA, vol.93, pp.15272-15275, 1996.

P. Bundock, A. Den-dulk-ras, A. Beijersbergen, and P. J. Hooykaas, Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae, EMBO J, vol.14, pp.3206-3214, 1995.
DOI : 10.1002/j.1460-2075.1995.tb07323.x

A. K. Cain and C. J. Boinett, A CRISPR view of genome sequences, Nat. Rev. Microbiol, vol.11, p.226, 2013.
DOI : 10.1038/nrmicro2997

J. R. Chapman, M. R. Taylor, and S. J. Boulton, Playing the end game: DNA double-strand break repair pathway choice, Mol. Cell, vol.47, pp.497-510, 2012.
DOI : 10.1016/j.molcel.2012.07.029

URL : https://doi.org/10.1016/j.molcel.2012.07.029

C. Charbonnel, M. E. Gallego, and C. I. White, Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants, Plant J, vol.64, pp.280-290, 2010.
DOI : 10.1111/j.1365-313x.2010.04331.x

URL : https://hal.archives-ouvertes.fr/inserm-00595784

C. Charbonnel, E. Allain, M. E. Gallego, and C. I. White, Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis, DNA Repair, vol.10, pp.611-619, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00595841

Y. Chen, L. Lu, and W. Deng, In vitro regeneration and Agrobacterium-mediated genetic transformation of Euonymus alatus, Plant Cell Rep, vol.25, pp.1043-1051, 2006.
DOI : 10.1007/s00299-006-0168-8

M. D. Chilton and Q. Que, Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration, Plant Physiol, vol.133, pp.956-965, 2003.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

O. Da-ines and C. White, Gene site-specific insertion in plants, Site-directed Insertion of Transgenes, pp.287-315, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01907381

L. Daxinger, B. Hunter, M. Sheikh, V. Jauvion, V. Gasciolli et al., Unexpected silencing effects from T-DNA tags in Arabidopsis, Trends Plant Sci, vol.13, pp.4-6, 2008.
DOI : 10.1016/j.tplants.2007.10.007

M. De-cleene and J. De-ley, The host range of crown gall, Bot. Rev, vol.42, pp.389-466, 1976.

A. Decottignies, Alternative end-joining mechanisms: a historical perspective, p.48, 2013.
DOI : 10.3389/fgene.2013.00048

URL : https://www.frontiersin.org/articles/10.3389/fgene.2013.00048/pdf

C. Desfeux, S. J. Clough, and A. F. Bent, Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method, Plant Physiol, vol.123, pp.895-904, 2000.

Y. Dessaux, A. Petit, and J. Tempe, Chemistry and biochemistry of opines, chemical mediators of parasitism, Phytochemistry, vol.34, pp.31-38, 1993.

M. Endo, Y. Ishikawa, and K. Osakabe, Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants, EMBO J, vol.25, pp.5579-5590, 2006.

F. Fattah, E. H. Lee, N. Weisensel, Y. Wang, N. Lichter et al., Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells, PLoS Genet, vol.6, p.1000855, 2010.

F. Fauser, N. Roth, M. Pacher, G. Ilg, R. Sanchez-fernandez et al., planta gene targeting. Proc. Natl Acad. Sci. USA, vol.109, pp.7535-7540, 2012.
DOI : 10.1073/pnas.1202191109

URL : http://www.pnas.org/content/109/19/7535.full.pdf

J. Friesner and A. B. Britt, Ku80-and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration, Plant J, vol.34, pp.427-440, 2003.
DOI : 10.1046/j.1365-313x.2003.01738.x

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.2003.01738.x/pdf

M. E. Gallego, J. Y. Bleuyard, S. Daoudal-cotterell, N. Jallut, and C. I. White, Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis, Plant J, vol.35, pp.557-565, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00595815

C. Gatz, C. Frohberg, and R. Wendenburg, Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants, Plant J, vol.2, pp.397-404, 1992.

S. B. Gelvin, Plant proteins involved in Agrobacterium-mediated genetic transformation, Annu. Rev. Phytopathol, vol.48, pp.45-68, 2010.

S. B. Gelvin, Traversing the cell: Agrobacterium T-DNA's journey to the host genome, Front. Plant Sci, vol.3, p.52, 2012.

G. Gheysen, R. Villarroel, and M. Van-montagu, Illegitimate recombination in plants: a model for T-DNA integration, Genes Dev, vol.5, pp.287-297, 1991.

M. J. De-groot, P. Bundock, P. J. Hooykaas, and A. G. Beijersbergen, Agrobacterium tumefaciens-mediated transformation of filamentous fungi, Nat. Biotechnol, vol.16, pp.839-842, 1998.

G. R. Harlow, M. E. Jenkins, T. S. Pittalwala, and D. W. Mount, Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation, Plant Cell, vol.6, pp.227-235, 1994.

S. L. Hobbs, T. D. Warkentin, and C. M. Delong, Transgene copy number can be positively or negatively associated with transgene expression, Plant Mol. Biol, vol.21, pp.17-26, 1993.

Y. Ishida, H. Saito, S. Ohta, Y. Hiei, T. Komari et al., High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens, Nat. Biotechnol, vol.14, pp.745-750, 1996.

Q. Jia, P. Bundock, P. J. Hooykaas, and S. D. Pater, Agrobacterium tumefaciens T-DNA integration and gene targeting in Arabidopsis thaliana non-homologous end-joining mutants, J. Bot, p.989272, 2012.

A. Kinner, W. Wu, C. Staudt, and G. Iliakis, ) c-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin, Nucleic Acids Res, vol.36, pp.5678-5694, 2008.

J. Li, M. Vaidya, C. White, A. Vainstein, V. Citovsky et al., Involvement of KU80 in T-DNA integration in plant cells, Proc. Natl Acad. Sci. USA, vol.102, pp.19231-19236, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00595925

J. F. Li, J. E. Norville, J. Aach, M. Mccormack, D. Zhang et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9, Nat. Biotechnol, vol.31, pp.688-691, 2013.

M. R. Lieber, The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annu. Rev. Biochem, vol.79, pp.181-211, 2010.

C. Liu, X. Li, and S. Gelvin, Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens, Plant Mol. Biol, vol.20, pp.1071-1087, 1992.

J. L. Ma, E. M. Kim, J. E. Haber, and S. E. Lee, Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences, Mol. Cell. Biol, vol.23, pp.8820-8828, 2003.

B. L. Mahaney, K. Meek, and S. P. Lees-miller, Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining, Biochem. J, vol.417, pp.639-650, 2009.

R. Mayerhofer, Z. Koncz-kalman, C. Nawrath, G. Bakkeren, A. Crameri et al., T-DNA integration: a mode of illegitimate recombination in plants, EMBO J, vol.10, pp.697-704, 1991.

P. Meyer and H. Saedler, Homology-dependent gene silencing in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.47, pp.23-48, 1996.

E. Mladenov and G. Iliakis, Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways, Mutat. Res, vol.711, pp.61-72, 2011.

J. W. Morris and R. O. Morris, Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menziesii, Proc. Natl Acad. Sci. USA, vol.87, pp.3614-3618, 1990.

K. S. Mysore, C. T. Kumar, and S. B. Gelvin, Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation, Plant J, vol.21, pp.9-16, 2000.

K. S. Mysore, J. Nam, and S. B. Gelvin, An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration, Proc. Natl Acad. Sci. USA, vol.97, pp.948-953, 2000.

J. Nam, A. G. Matthysse, and S. B. Gelvin, Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration, Plant Cell, vol.9, pp.317-333, 1997.

J. Nam, K. S. Mysore, and S. B. Gelvin, Agrobacterium tumefaciens transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvh1 and rad5, Mol. Plant-Microbe Interact, vol.11, pp.1136-1141, 1998.

J. Nam, K. S. Mysore, C. Zheng, M. K. Knue, A. G. Matthysse et al., Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium, Mol. Gen. Genet, vol.261, pp.429-438, 1999.

V. Nekrasov, B. Staskawicz, D. Weigel, J. D. Jones, and S. Kamoun, Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease, Nat. Biotechnol, vol.31, pp.691-693, 2013.

A. Nishizawa-yokoi, S. Nonaka, H. Saika, Y. I. Kwon, K. Osakabe et al., Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice, New Phytol, vol.196, pp.1048-1059, 2012.

D. I. Thordal-christensen, H. , M. L. Pamfil, D. Botez, C. Bellini et al., Agrobacterium tumefaciens: from crown gall tumors to genetic transformation, Physiol. Mol. Plant Pathol, vol.76, pp.76-81, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01190235

A. Pitzschke and H. Hirt, New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation, EMBO J, vol.29, pp.1021-1032, 2010.

S. B. Preuss, C. Z. Jiang, H. K. Baik, C. I. Kado, and A. B. Britt, Radiation-sensitive Arabidopsis mutants are proficient for T-DNA transformation, Mol. Gen. Genet, vol.261, pp.623-626, 1999.

Y. Qi, Y. Zhang, F. Zhang, J. A. Baller, S. C. Cleland et al., Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways, Genome Res, vol.23, pp.547-554, 2013.

S. Salomon and H. Puchta, Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells, EMBO J, vol.17, pp.6086-6095, 1998.

D. Schubert, B. Lechtenberg, A. Forsbach, M. Gils, S. Bahadur et al., Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects, Plant Cell, vol.16, pp.2561-2572, 2004.

Q. Shan, Y. Wang, and J. Li, Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol, vol.31, pp.686-688, 2013.

K. Singer, Y. M. Shiboleth, J. Li, and T. Tzfira, Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants, Plant Physiol, vol.160, pp.511-522, 2012.

E. F. Smith and C. O. Townsend, A plant tumor of bacterial origin, Science, vol.25, pp.671-673, 1907.

A. M. Stomp, C. Loopstra, W. S. Chilton, R. R. Sederoff, and L. W. Moore, Extended host range of Agrobacterium tumefaciens in the genus Pinus, Plant Physiol, vol.92, pp.1226-1232, 1990.

N. Suwaki, K. Klare, and M. Tarsounas, RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis, Semin. Cell Dev. Biol, vol.22, pp.898-905, 2011.

L. S. Symington and J. Gautier, Double-strand break end resection and repair pathway choice, Annu. Rev. Genet, vol.45, pp.247-271, 2011.

J. Temp-e and A. Goldmann, Opine utilization by Agrobacterium, Molecular Biology of Plant Tumors, pp.451-459, 1982.

J. Thacker, The RAD51 gene family, genetic instability and cancer, Cancer Lett, vol.219, pp.125-135, 2005.

L. S. Thomashow, S. Reeves, and M. F. Thomashow, Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid, Proc. Natl Acad. Sci. USA, vol.81, pp.5071-5075, 1984.

T. Tzfira and V. Citovsky, Agrobacterium-mediated genetic transformation of plants: biology and biotechnology, Curr. Opin. Biotechnol, vol.17, pp.147-154, 2006.

T. Tzfira, M. Vaidya, and V. Citovsky, VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity, EMBO J, vol.20, pp.3596-3607, 2001.

T. Tzfira, L. R. Frankman, M. Vaidya, and V. Citovsky, Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates, Plant Physiol, vol.133, pp.1011-1023, 2003.

T. Tzfira, J. Li, B. Lacroix, and V. Citovsky, Agrobacterium T-DNA integration: molecules and models, Trends Genet, vol.20, pp.375-383, 2004.

T. Tzfira, D. Weinthal, I. Marton, V. Zeevi, A. Zuker et al., Genome modifications in plant cells by custom-made restriction enzymes, Plant Biotechnol. J, vol.10, pp.373-389, 2012.

C. I. Ullrich and R. Aloni, Vascularization is a general requirement for growth of plant and animal tumours, J. Exp. Bot, vol.51, pp.1951-1960, 2000.

Z. E. Vaghchhipawala, B. Vasudevan, S. Lee, M. R. Morsy, and K. S. Mysore, Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration, Plant Cell, vol.24, pp.4110-4123, 2012.

D. Valvekens, M. V. Montagu, and M. V. Lijsebettens, Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection, Proc. Natl Acad. Sci. USA, vol.85, pp.5536-5540, 1988.

M. Wang, W. Wu, B. Rosidi, L. Zhang, H. Wang et al., PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways, Nucleic Acids Res, vol.34, pp.6170-6182, 2006.

W. M. Waterworth, G. E. Drury, C. M. Bray, and C. E. West, Repairing breaks in the plant genome: the importance of keeping it together, New Phytol, vol.192, pp.805-822, 2011.

E. W. Weiler and J. Schr?-oder, Hormone genes and crown gall disease, Trends Biochem. Sci, vol.12, pp.271-275, 1987.

E. Weterings and D. J. Chen, The endless tale of non-homologous end-joining, Cell Res, vol.18, pp.114-124, 2008.

P. R. White and A. C. Braun, A cancerous neoplasm of plants. Autonomous bacteria-free crown-gall tissue, Cancer Res, vol.2, pp.597-617, 1942.

G. N. Ye, D. Stone, S. Z. Pang, W. Creely, K. Gonzalez et al., Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation, Plant J, vol.19, pp.249-257, 1999.

W. J. Zhang, R. E. Dewey, W. Boss, B. Q. Phillippy, and R. Qu, Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses, Plant Mol. Biol, vol.81, pp.273-286, 2013.

Y. Zhu, J. Nam, and J. M. Humara, Identification of Arabidopsis rat mutants, Plant Physiol, vol.132, pp.494-505, 2003.