J. Heyman, R. P. Kumpf, D. Veylder, and L. , A quiescent path to plant longevity, Trends Cell Biol, vol.24, pp.443-448, 2014.

I. Kurth and M. Donnel, New insights into replisome fluidity during chromosome replication, Trends Biochem Sci, vol.38, pp.195-203, 2013.

P. Garg and P. M. Burgers, DNA polymerases that propagate the eukaryotic DNA replication fork, Crit. Rev. Biochem. Mol. Biol, vol.40, pp.115-128, 2005.

Z. F. Pursell, I. Isoz, E. B. Lundstrom, E. Johansson, and T. A. Kunkel, Yeast DNA polymerase epsilon participates in leading-strand DNA replication, Science, vol.317, pp.127-130, 2007.

R. E. Johnson, R. Klassen, L. Prakash, and S. Prakash, A major role of DNA polymerase in replication of both the leading and lagging DNA strands, Mol. Cell, vol.59, pp.1-13, 2015.

Z. F. Pursell and T. A. Kunkel, DNA polymerase epsilon: a polymerase of unusual size (and complexity), Prog. Nucleic Acids Res. Mol. Biol, vol.82, pp.101-145, 2008.

S. Sengupta, F. Van-deursen, G. De-piccoli, and K. Labib, Dpb2 Integrates the Leading-Strand DNA Polymerase into the Eukaryotic Replisome, Curr. Biol, vol.23, pp.543-552, 2013.

L. D. Langston, D. Zhang, O. Yurieva, R. E. Georgescu, J. Finkelstein et al., CMG helicase and DNA polymerase form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.15390-15395, 2014.

, Nucleic Acids Research, vol.44, issue.15, p.7265, 2016.

T. A. Navas, Z. Zhou, and S. J. Elledge, DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint, Cell, vol.80, pp.29-39, 1995.

L. C. Roseaulin, C. Noguchi, E. Martinez, M. A. Ziegler, T. Toda et al., Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex, PLoS Genet, vol.9, p.1003213, 2013.

D. Branzei and M. Foiani, The checkpoint response to replication stress, DNA Repair (Amst.), vol.8, pp.1038-1046, 2009.

F. Puddu, G. Piergiovanni, P. Plevani, and M. Muzi-falconi, Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase, PLoS Genet, vol.7, p.1002022, 2011.

J. Van-leene, H. Stals, D. Eeckhout, G. Persiau, E. Van-de-slijke et al., A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana, Mol. Cell. Proteomics, vol.6, pp.1226-1238, 2007.

A. Ronceret, J. Guilleminot, F. Lincker, J. Gadea-vacas, V. Delorme et al., Genetic analysis of two Arabidopsis DNA polymerase epsilon subunits during early embryogenesis, Plant J, vol.44, pp.223-236, 2005.

K. Petroni, R. W. Kumimoto, N. Gnesutta, V. Calvenzani, M. Fornari et al., The promiscuous life of plant NUCLEAR FACTOR Y transcription factors, Plant Cell, vol.24, pp.4777-4792, 2012.

P. D. Jenik, R. E. Jurkuta, and M. K. Barton, Interactions between the cell cycle and embryonic patterning in Arabidopsis uncovered by a mutation in DNA polymerase epsilon, Plant Cell, vol.17, pp.3362-3377, 2005.

H. Sato, J. Mizoi, H. Tanaka, K. Maruyama, F. Qin et al., Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits, Plant Cell, vol.26, pp.4954-4973, 2014.

H. Yin, X. Zhang, J. Liu, Y. Wang, J. He et al., Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in Arabidopsis, Plant Cell, vol.21, pp.386-402, 2009.

I. Del-olmo, L. Lopez-gonzalez, M. M. Martin-trillo, J. M. Martinez-zapater, M. Pineiro et al., EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing, Plant J, vol.61, pp.623-636, 2010.

D. Olmo, I. L-´-opez, J. A. Vázquez, J. Raynaud, C. Piñeiropi?piñeiro et al., Arabidopsis DNA polymerase ? recruits components of Polycomb repressor complex to mediate epigenetic gene silencing, Nucleic Acids Res, 2016.

K. O. Yoshiyama, K. Sakagushi, and S. Kimura, DNA damage response in plants: conserved and variable response compared to animals, Biology, vol.2, pp.1338-1356, 2013.

K. Culligan, A. Tissier, and A. Britt, ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana, Plant Cell, vol.16, pp.1091-1104, 2004.

K. M. Culligan, C. E. Robertson, J. Foreman, P. Doerner, and A. B. Britt, ATR and ATM play both distinct and additive roles in response to ionizing radiation, Plant J, vol.48, pp.947-961, 2006.

K. Yoshiyama, P. A. Conklin, N. D. Huefner, and A. B. Britt, Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.12843-12848, 2009.

S. Adachi, K. Minamisawa, Y. Okushima, S. Inagaki, K. Yoshiyama et al., Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.10004-10009, 2011.

D. Schutter, K. Joubes, J. Cools, T. Verkest, A. Corellou et al., Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint, Plant Cell, vol.19, pp.211-225, 2007.

N. Fulcher and R. Sablowski, Hypersensitivity to DNA damage in plant stem cell niches, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.20984-20988, 2009.

T. Cools, D. Veylder, and L. , DNA stress checkpoint control and plant development, Curr. Opin. Plant Biol, vol.12, pp.23-28, 2009.

Y. Deveaux, A. Peaucelle, G. R. Roberts, E. Coen, R. Simon et al., The ethanol switch: a tool for tissue-specific gene induction during plant development, Plant J, vol.36, pp.918-930, 2003.

D. C. Boyes, A. M. Zayed, R. Ascenzi, A. J. Mccaskill, N. E. Hoffman et al., Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants, Plant Cell, vol.13, pp.1499-1510, 2001.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

P. Lamesch, T. Z. Berardini, D. Li, D. Swarbreck, C. Wilks et al., The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools, Nucleic Acids Res, vol.40, pp.1202-1210, 2012.

K. J. Ross, P. Fransz, and G. H. Jones, A light microscopic atlas of meiosis in Arabidopsis thaliana, Chromosome Res, vol.4, pp.507-516, 1996.

K. Hayashi, J. Hasegawa, and S. Matsunaga, The boundary of the meristematic and elongation zones in roots: endoreduplication precedes rapid cell expansion, Sci. Rep, vol.3, p.2723, 2013.

E. Hudik, Y. Yoshioka, S. Domenichini, M. Bourge, L. Soubigout-taconnat et al., Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant, Plant Physiol, vol.166, pp.152-167, 2014.

C. Charbonnel, M. E. Gallego, and C. I. White, Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants, Plant J, vol.64, pp.280-290, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00595784

D. A. Ni, R. Sozzani, S. Blanchet, S. Domenichini, C. Reuzeau et al., The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function, New Phytol, vol.184, pp.311-322, 2009.

M. Grelon, D. Vezon, G. Gendrot, and G. Pelletier, AtSPO11-1 is necessary for efficient meiotic recombination in plants, EMBO J, vol.20, pp.589-600, 2001.

A. G. Baranovskiy, N. D. Babayeva, Y. Suwa, J. Gu, Y. I. Pavlov et al., Structural basis for inhibition of DNA replication by aphidicolin, Nucleic Acids Res, vol.42, pp.14013-14021, 2014.

D. Yi, C. L. Kamei, T. Cools, S. Vanderauwera, N. Takahashi et al., The Arabidopsis thaliana SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 control the DNA damage checkpoint in response to reactive oxygen species, Plant Cell, vol.26, pp.296-309, 2014.

S. Amiard, C. Charbonnel, E. Allain, A. Depeiges, C. I. White et al., Distinct roles of the ATR kinase and the Mre11-Rad50-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis, Plant Cell, vol.22, pp.3020-3033, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00595794

C. Charbonnel, E. Allain, M. E. Gallego, and C. I. White, Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis, DNA Repair (Amst.), vol.10, pp.611-619, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00595841

M. Rosa, V. Harder, M. Cigliano, R. A. Schï-ogelhofer, P. Scheid et al., The Arabidopsis SWR1 chromatin-remodeling complex is important for DNA repair, somatic recombination, and meiosis, Plant Cell, vol.25, 1990.

D. Fu, J. A. Calvo, and L. D. Samson, Balancing repair and tolerance of DNA damage caused by alkylating agents, Nat. Rev. Cancer, vol.12, pp.104-120, 2012.

F. Lin, X. Ma, Z. Wang, Z. Wang, Y. Luo et al., Different fates of oocytes with DNA double-strand breaks in vitro and in vivo, Cell Cycle, vol.13, pp.2674-2680, 2014.

L. Daxinger, B. Hunter, M. Sheikh, V. Jauvion, V. Gasciolli et al., Unexpected silencing effects from T-DNA tags in Arabidopsis, Trends Plant Sci, vol.13, pp.4-6, 2008.

Z. Hu, T. Cools, P. Kalhorzadeh, J. Heyman, D. Veylder et al., Deficiency of the Arabidopsis helicase RTEL1, 2015.

, Nucleic Acids Research, vol.44, issue.15, 2016.

, SOG1-dependent replication checkpoint in response to DNA cross-links, Plant Cell, vol.27, pp.149-161

O. Chilkova, B. Jonsson, and E. Johansson, The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae, J. Biol. Chem, vol.278, pp.14082-14086, 2003.

Y. Li, H. Asahara, V. S. Patel, S. Zhou, and S. Linn, Purification, cDNA cloning, and gene mapping of the small subunit of human DNA polymerase epsilon, J. Biol. Chem, vol.272, pp.32337-32344, 1997.

M. Jaszczur, K. Flis, J. Rudzka, J. Kraszewska, M. E. Budd et al., Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae, Genetics, vol.178, pp.633-647, 2008.

M. Endo, Y. Ishikawa, K. Osakabe, S. Nakayama, H. Kaya et al., Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis, Bolã nos-Villegas, vol.25, pp.927-940, 2006.

B. B. Aklilu, R. S. Soderquist, and K. M. Culligan, Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication, Nucleic Acids Res, vol.42, pp.3104-3118, 2014.

S. Domenichini, M. Benhamed, G. De-jaeger, E. Van-de-slijke, S. Blanchet et al., Evidence for a role of Arabidopsis CDT1 proteins in gametophyte development and maintenance of genome integrity, Plant Cell, vol.24, pp.2779-2791, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00855562

S. Roy, Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability, Front. Plant Sci, vol.5, p.487, 2014.

S. S. Lange, K. Takata, and R. D. Wood, DNA polymerases and cancer, Nat. Rev. Cancer, vol.11, pp.96-110, 2011.

E. E. Henninger and Z. F. Pursell, DNA polymerase and its roles in genome stability, IUBMB Life, vol.66, pp.339-351, 2014.

W. Feng and G. Urso, Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control, Mol. Cell. Biol, vol.21, pp.4495-4504, 2001.

L. J. García-rodríguez, G. De-piccoli, V. Marchesi, R. C. Jones, R. D. Edmondson et al., A conserved Pol? binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1, Nucleic Acids Res, vol.43, pp.8830-8838, 2015.

G. Besteiro, M. A. Ulm, and R. , ATR and MKP1 play distinct roles in response to UV-B stress in Arabidopsis, Plant J, vol.73, pp.1034-1043, 2013.

R. Stevens, M. Grelon, D. Vezon, J. Oh, P. Meyer et al., A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing, Plant Cell, vol.16, pp.99-113, 2004.

J. Huang, Z. Cheng, C. Wang, Y. Hong, H. Su et al., Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.12534-12539, 2015.

D. Kamel, Z. B. Mackey, T. Sjöblomsj¨sjöblom, C. A. Walter, J. R. Mccarrey et al., Role of deoxyribonucleic acid polymerase epsilon in spermatogenesis in mice, Biol. Reprod, vol.57, pp.1367-1374, 1997.

M. Grelon, G. Gendrot, D. Vezon, and G. Pelletier, The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs, Plant J, vol.35, pp.465-475, 2003.

T. Handa, M. Kanke, T. S. Takahashi, T. Nakagawa, and H. Masukata, DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast, Mol. Biol. Cell, vol.23, pp.3240-3253, 2012.

S. B. Preuss and A. B. Britt, A DNA-damage-induced cell cycle checkpoint in Arabidopsis, Genetics, vol.164, pp.323-334, 2003.

K. O. Yoshiyama, J. Kobayashi, N. Ogita, M. Ueda, S. Kimura et al., ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis, EMBO Rep, vol.14, pp.817-822, 2013.

N. Vlatkovic, S. Guerrera, Y. Li, S. Linn, D. S. Haines et al., MDM2 interacts with the C-terminus of the catalytic subunit of DNA polymerase epsilon, Nucleic Acids Res, vol.28, pp.3581-3586, 2000.