N. W. Ashton and D. J. Cove, The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol. Gen. Genet, vol.154, pp.87-95, 1977.

N. W. Ashton, N. H. Grimsley, and D. J. Cove, Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants, Planta, vol.144, pp.427-435, 1979.

R. Bilang, S. Iida, A. Peterhans, I. Potrykus, and J. Paszkowski, The 3 0terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum, Gene, vol.100, pp.247-250, 1991.

S. Bonhomme, F. Nogu-e, C. Rameau, and D. G. Schaefer, Usefulness of Physcomitrella patens for studying plant organogenesis, Methods Mol. Biol, vol.959, pp.21-43, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01203967

R. Ceccaldi, B. Rondinelli, A. D. Andrea, T. Baltes, N. J. Cegan et al., Repair pathway choices and consequences at the double-strand break, Trends Cell Biol, vol.26, p.232, 2015.

F. Charlot, L. Chelysheva, Y. Kamisugi, N. Vrielynck, A. Guyon et al., RAD51B plays an essentialrole during somatic and meiotic recombination in Physcomitrella, NucleicAcids Res, vol.42, pp.11965-11978, 2014.

C. Collonnier, F. Nogu-e, and J. M. Casacuberta, Targeted genetic modification in crops using site-directed nucleases, Genetically Modified Organisms in Food, pp.133-145, 2016.

D. 'halluin, K. Vanderstraeten, C. Van-hulle, and J. , Targeted molecular trait stacking in cotton through targeted double-strand break induction, Plant Biotechnol. J, vol.11, pp.933-941, 2013.

J. E. Dicarlo, J. E. Norville, P. Mali, X. Rios, J. Aach et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res, vol.41, pp.4336-4343, 2013.

Z. Feng, Y. Mao, and N. Xu, Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis, Proc. Natl Acad. Sci. USA, vol.111, pp.4632-4637, 2014.

Y. Fu, J. A. Foden, C. Khayter, M. L. Maeder, D. Reyon et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol, vol.31, pp.822-826, 2013.

G. Gasiunas, R. Barrangou, P. Horvath, and V. Siksnys, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl Acad. Sci. USA, vol.109, pp.2579-2586, 2012.

M. Hanin and J. Paszkowski, Plant genome modification by homologous recombination, Curr. Opin. Plant Biol, vol.6, pp.157-162, 2003.

J. T. Holthausen, C. Wyman, and R. Kanaar, Regulation of DNA strand exchange in homologous recombination, DNA Repair (Amst.), vol.9, pp.1264-1272, 2010.

A. Hruscha, P. Krawitz, A. Rechenberg, V. Heinrich, J. Hecht et al., Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish, Development, vol.140, pp.4982-4987, 2013.

Y. Kamisugi, K. Schlink, S. A. Rensing, G. Schween, M. Von-stackelberg et al., The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration, Nucleic Acids Res, vol.34, pp.6205-6214, 2006.

Y. Kamisugi, D. G. Schaefer, J. Kozak, F. Charlot, N. Vrielynck et al., MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens, Nucleic Acids Res, vol.40, pp.3496-3510, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01003435

B. P. Kleinstiver, M. S. Prew, and S. Q. Tsai, Engineered CRISPR-Cas9 nucleases with altered PAM specificities, Nature, vol.523, pp.481-485, 2015.

R. Kofuji and M. Hasebe, Eight types of stem cells in the life cycle of the moss Physcomitrella patens, Curr. Opin. Plant Biol, vol.17, pp.13-21, 2014.

E. S. Lander, The Heroes of CRISPR, Cell, vol.164, pp.18-28, 2016.

X. Li, D. H. Jiang, K. Yong, and D. B. Zhang, Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes, J. Integr. Plant Biol, vol.49, pp.222-229, 2007.

J. Li, J. E. Norville, J. Aach, M. Mccormack, D. Zhang et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9, Nat. Biotechnol, vol.31, pp.688-691, 2013.

P. Mali, K. M. Esvelt, and G. M. Church, Cas9 as a versatile tool for engineering biology, Nat. Methods, vol.10, pp.957-963, 2013.

D. Mcelroy, A. D. Blowers, B. Jenes, and R. Wu, Construction of expression vectors based on the rice actin 1 (Act1) 5 0 region for use in monocot transformation, Mol. Gen. Genet, vol.231, pp.150-160, 1991.

A. Nishizawa-yokoi, M. Endo, N. Ohtsuki, H. Saika, and S. Toki, Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision, Plant J, vol.81, pp.160-168, 2015.

F. P^-aques and J. E. Haber, Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol, Mol. Biol. Rev, vol.63, pp.349-404, 1999.

J. F. Petolino, V. Srivastava, and H. Daniell, Editing Plant Genomes: a new era of crop improvement, Plant Biotechnol. J, vol.14, pp.435-436, 2016.

M. J. Prigge and M. Bezanilla, Evolutionary crossroads in developmental biology: Physcomitrella patens, Development, vol.137, pp.3535-3543, 2010.

H. Proust, B. Hoffmann, X. Xie, K. Yoneyama, D. G. Schaefer et al., Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens, Development, vol.138, pp.1531-1539, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001469

H. Puchta, The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution, J. Exp. Bot, vol.56, pp.1-14, 2005.

R. Reski, J. Parsons, and E. L. Decker, Moss-made pharmaceuticals: from bench to bedside, Plant Biotechnol. J, vol.13, pp.1191-1198, 2015.

D. G. Schaefer, Gene targeting in Physcomitrella patens, Curr. Opin. Plant Biol, vol.4, pp.143-150, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01003435

D. G. Schaefer, A new moss genetics: targeted mutagenesis in Physcomitrella patens, Annu. Rev. Plant Biol, vol.53, pp.477-501, 2002.

D. G. Schaefer and J. P. Zr?-yd, Efficient gene targeting in the moss Physcomitrella patens, Plant J, vol.11, pp.1195-1206, 1997.
URL : https://hal.archives-ouvertes.fr/inserm-01904879

D. Schaefer and J. Zr?-yd, Principles of targeted mutagenesis in the moss Physcomitrella patens, New Frontiers in Bryology, pp.37-49, 2004.

D. G. Schaefer, F. Delacote, F. Charlot, N. Vrielynck, A. Guyon-debast et al., RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens, DNA Repair (Amst.), vol.9, pp.526-533, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203895

S. M. Schaeffer and P. A. Nakata, CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field, Plant Sci, vol.240, pp.130-142, 2015.

D. A. Schaff, The adenine phosphoribosyltransferase (APRT) selectable marker system, Plant Sci, vol.101, pp.3-9, 1994.

R. H. Schiestl, J. Zhu, and T. D. Petes, Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.14, pp.4493-4500, 1994.

S. Schiml and H. Puchta, Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas, Plant Methods, vol.12, 2016.

S. Schiml, F. Fauser, and H. Puchta, The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny, Plant J, vol.9, pp.1139-1150, 2014.

V. K. Shukla, Y. Doyon, and J. C. Miller, Precise genome modification in the crop species Zea mays using zinc-finger nucleases, Nature, vol.459, pp.437-441, 2009.

I. M. Slaymaker, L. Gao, B. Zetsche, D. A. Scott, W. X. Yan et al., Rationally engineered Cas9 nucleases with improved specificity, Science, vol.351, pp.84-88, 2015.

L. S. Symington, Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol, Mol. Biol. Rev, vol.66, pp.630-670, 2002.

J. A. Townsend, D. A. Wright, R. J. Winfrey, F. Fu, M. L. Maeder et al., High-frequency modification of plant genes using engineered zinc-finger nucleases, Nature, vol.459, pp.442-445, 2009.

B. Trouiller, D. G. Schaefer, F. Charlot, and F. Nogu-e, MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens, Nucleic Acids Res, vol.34, pp.232-242, 2006.

B. Trouiller, F. Charlot, S. Choinard, D. G. Schaefer, and F. Nogu-e, Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of Bryophyte transformation, Biotechnol. Lett, vol.29, pp.1591-1598, 2007.

H. Wang, H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell, vol.153, pp.910-918, 2013.

E. Wendeler, O. Zobell, B. Chrost, and B. Reiss, Recombination products suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens, Plant J, vol.81, pp.548-558, 2015.

K. Xie and Y. Yang, RNA-guided genome editing in plants using a CRISPR-Cas system, Mol. Plant, vol.6, pp.1975-1983, 2013.