S. Adachi, K. Minamisawa, and Y. Okushima, Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis, Proc. Natl Acad. Sci. USA, vol.108, pp.10004-10009, 2011.

S. Agarwal, W. A. Van-cappellen, A. Guenole, B. Eppink, S. E. Linsen et al., ATP-dependent and independent functions of Rad54 in genome maintenance, J. Cell Biol, vol.192, pp.735-750, 2011.

A. Baxter, R. Mittler, and N. Suzuki, ROS as key players in plant stress signalling, J. Exp. Bot, vol.65, pp.1229-1240, 2014.

H. H. Baydoun, X. T. Bai, S. Shelton, and C. Nicot, HTLV-I tax increases genetic instability by inducing DNA double strand breaks during DNA replication and switching repair to NHEJ, PLoS ONE, vol.7, p.42226, 2012.

J. Y. Bleuyard, M. E. Gallego, F. Savigny, and C. I. White, Differing requirement for the Arabidopsis RAD51 paralogs in meiosis and DNA repair, Plant J, vol.41, pp.533-545, 2005.

S. J. Ceballos and W. D. Heyer, Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination, Biochim. Biophys. Acta, vol.1809, pp.509-523, 2011.

K. M. Culligan, C. E. Robertson, J. Foreman, P. Doerner, and A. B. Britt, ATR and ATM play both distinct and additive roles in response to ionizing radiation, Plant J, vol.48, pp.947-961, 2006.

O. Da-ines, F. Degroote, S. Amiard, C. Goubely, M. E. Gallego et al., Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in Arabidopsis thaliana, Plant J, vol.74, pp.959-970, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01907384

O. Da-ines, F. Degroote, C. Goubely, S. Amiard, M. E. Gallego et al., Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role, PLoS Genet, vol.9, p.1003787, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01907382

J. Essers, A. B. Houtsmuller, L. Van-veelen, C. Paulusma, A. L. Nigg et al., Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage, EMBO J, vol.21, pp.2030-2037, 2002.

C. Forzani, E. Aichinger, E. Sornay, V. Willemsen, T. Laux et al., WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche, Curr. Biol, vol.24, pp.1939-1944, 2014.

J. D. Friesner, B. Liu, K. Culligan, and A. B. Britt, Ionizing radiationdependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related, Mol. Biol. Cell, vol.16, pp.2566-2576, 2005.
DOI : 10.1091/mbc.e04-10-0890

URL : http://europepmc.org/articles/pmc1087258?pdf=render

N. Fulcher and R. Sablowski, Hypersensitivity to DNA damage in plant stem cell niches, Proc. Natl Acad. Sci. USA, vol.106, pp.20984-20988, 2009.
DOI : 10.1073/pnas.0909218106

URL : http://www.pnas.org/content/106/49/20984.full.pdf

K. Hayashi, J. Hasegawa, and S. Matsunaga, The boundary of the meristematic and elongation zones in roots: endoreduplication precedes rapid cell expansion, Sci. Rep, vol.3, p.2723, 2013.

T. Hirakawa, Y. Katagiri, T. Ando, and S. Matsunaga, DNA doublestrand breaks alter the spatial arrangement of homologous loci in plant cells, Sci. Rep, vol.5, p.11058, 2015.

N. Jia, X. Liu, and H. Gao, A DNA2 homolog is required for DNA damage repair, cell cycle regulation, and meristem maintenance in plants, Plant Physiol, vol.171, pp.318-333, 2016.

M. Klutstein, H. Shaked, A. Sherman, N. Avivi-ragolsky, E. Shema et al., Functional conservation of the yeast and Arabidopsis RAD54-like genes, Genetics, vol.178, pp.2389-2397, 2008.

J. Lang, O. Smetana, L. Sanchez-calderon, F. Lincker, J. Genestier et al., Plant gamma H2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors, New Phytol, vol.194, pp.353-363, 2012.
DOI : 10.1111/j.1469-8137.2012.04062.x

URL : https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.2012.04062.x

H. Lans, J. A. Marteijn, and W. Vermeulen, ATP-dependent chromatin remodeling in the DNA-damage response, Epigenetics Chromatin, vol.5, p.4, 2012.
DOI : 10.1186/1756-8935-5-4

URL : https://epigeneticsandchromatin.biomedcentral.com/track/pdf/10.1186/1756-8935-5-4

M. Lisby, R. Rothstein, and U. H. Mortensen, Rad52 forms DNA repair and recombination centers during S phase, Proc. Natl Acad. Sci. USA, vol.98, pp.8276-8282, 2001.
DOI : 10.1073/pnas.121006298

URL : http://www.pnas.org/content/98/15/8276.full.pdf

M. Lisby, J. H. Barlow, R. C. Burgess, and R. Rothstein, Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins, Cell, vol.118, pp.699-713, 2004.

M. P. Longhese, D. Bonetti, N. Manfrini, and M. Clerici, Mechanisms and regulation of DNA end resection, EMBO J, vol.29, pp.2864-2874, 2010.
DOI : 10.1038/emboj.2010.165

URL : http://emboj.embopress.org/content/29/17/2864.full.pdf

J. M. Mason, K. Dusad, W. D. Wright, J. Grubb, B. Budke et al., RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells, Nucleic Acids Res, vol.43, pp.3180-3196, 2015.

J. Mine-hattab and R. Rothstein, Increased chromosome mobility facilitates homology search during recombination, Nat. Cell Biol, vol.14, pp.510-517, 2012.

T. Nakagawa, T. Suzuki, and S. Murata, Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants, Biosci. Biotechnol. Biochem, vol.71, pp.2095-2100, 2007.

K. Osakabe, K. Abe, T. Yoshioka, Y. Osakabe, S. Todoriki et al., Isolation and characterization of the RAD54 gene from Arabidopsis thaliana, Plant J, vol.48, pp.827-842, 2006.

A. N. Osipov, A. Grekhova, and M. Pustovalova, Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation, Oncotarget, vol.6, p.26876, 2015.

S. Otero, B. Desvoyes, R. Peiro, and C. Gutierrez, Histone H3 dynamics reveal domains with distinct proliferation potential in the arabidopsis root, Plant Cell, vol.28, pp.1361-1371, 2016.
DOI : 10.1105/tpc.15.01003

URL : http://www.plantcell.org/content/plantcell/28/6/1361.full.pdf

F. Paques and J. E. Haber, Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol, Mol. Biol. Rev, vol.63, pp.349-404, 1999.

K. Rothkamm, S. Barnard, J. Moquet, M. Ellender, Z. Rana et al., DNA damage foci: Meaning and significance. Environ, Mol. Mutagen, vol.56, pp.491-504, 2015.
DOI : 10.1002/em.21944

URL : http://onlinelibrary.wiley.com/doi/10.1002/em.21944/pdf

B. A. Rowan, D. J. Oldenburg, and A. J. Bendich, RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis, J. Exp. Bot, vol.61, pp.2575-2588, 2010.

T. Sakamoto, Y. T. Inui, S. Uraguchi, T. Yoshizumi, S. Matsunaga et al., Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis, Plant Cell, vol.23, pp.3533-3546, 2011.

A. Samach, C. Melamed-bessudo, N. Avivi-ragolski, S. Pietrokovski, and A. A. Levy, Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-like genes, Plant Cell, vol.23, pp.4266-4279, 2011.

M. Schwartz, E. Zlotorynski, M. Goldberg, E. Ozeri, A. Rahat et al., Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability, Genes Dev, vol.19, pp.2715-2726, 2005.

H. Shaked, N. Avivi-ragolsky, and A. A. Levy, Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination, Genetics, vol.173, pp.985-994, 2006.

C. A. Sjogren, S. C. Bolaris, and P. B. Larsen, Aluminum-Dependent Terminal Differentiation of the Arabidopsis Root Tip Is Mediated through an ATR-, ALT2-, and SOG1-Regulated Transcriptional Response, Plant Cell, vol.27, pp.2501-2515, 2015.

V. Srivastava, P. Modi, V. Tripathi, R. Mudgal, S. De et al., BLM helicase stimulates the ATPase and chromatin-remodeling activities of RAD54, J. Cell Sci, vol.122, pp.3093-3103, 2009.

L. R. Van-veelen, J. Essers, M. W. Van-de-rakt, H. Odijk, A. Pastink et al., Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52, Mutat. Res, vol.574, pp.34-49, 2005.

Y. Wang, R. Xiao, H. Wang, Z. Cheng, W. Li et al., The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation, New Phytol, vol.201, pp.292-304, 2014.

W. M. Waterworth, G. E. Drury, C. M. Bray, and C. E. West, Repairing breaks in the plant genome: the importance of keeping it together, New Phytol, vol.192, pp.805-822, 2011.

R. Yokoyama, T. Hirakawa, S. Hayashi, T. Sakamoto, and S. Matsunaga, Dynamics of plant DNA replication based on PCNA visualization, Sci. Rep, vol.6, p.29657, 2016.

K. Yoshiyama, P. A. Conklin, N. D. Huefner, and A. B. Britt, Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage, Proc. Natl Acad. Sci. USA, vol.106, pp.12843-12848, 2009.

K. O. Yoshiyama, J. Kobayashi, N. Ogita, M. Ueda, S. Kimura et al., ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis, EMBO Rep, vol.14, pp.817-822, 2013.

K. O. Yoshiyama, K. Sakaguchi, and S. Kimura, DNA damage response in plants: conserved and variable response compared to animals, Biology, vol.2, pp.1338-1356, 2013.

Z. Zhang, H. Y. Fan, J. A. Goldman, and R. E. Kingston, Homology-driven chromatin remodeling by human RAD54, Nat. Struct. Mol. Biol, vol.14, pp.397-405, 2007.