S. Charrin, S. Jouannet, C. Boucheix, and E. Rubinstein, Tetraspanins at a glance, J. Cell Sci, vol.127, pp.3641-3648, 2014.

S. Charrin, F. Le-naour, O. Silvie, P. E. Milhiet, C. Boucheix et al., Lateral organization of membrane proteins: tetraspanins spin their web, Biochem. J, vol.420, pp.133-154, 2009.

M. E. Hemler, Tetraspanin functions and associated microdomains, Nat. Rev. Mol. Cell Biol, vol.6, pp.801-811, 2005.

M. Yáñez-mó, O. Barreiro, M. Gordon-alonso, M. Sala-valdés, and F. Sánchez-madrid, Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes, Trends Cell Biol, vol.19, pp.434-446, 2009.

V. Serru, P. Dessen, C. Boucheix, and E. Rubinstein, Sequence and expression of seven new tetraspans, Biochim. Biophys. Acta, vol.1478, pp.159-163, 2000.

S. C. Todd, V. S. Doctor, L. , and S. , Sequences and expression of six new members of the tetraspanin/TM4SF family, Biochim. Biophys. Acta, vol.1399, pp.101-104, 1998.

S. Huang, S. Yuan, M. Dong, J. Su, C. Yu et al., The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms, Genomics, vol.86, pp.674-684, 2005.

E. Dornier, F. Coumailleau, J. F. Ottavi, J. Moretti, C. Boucheix et al., TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals, J. Cell Biol, vol.199, pp.481-496, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01186988

M. Seigneuret, A. Delaguillaumie, C. Lagaudrière-gesbert, C. , and H. , Structure of the tetraspanin main extracellular domain: a partially conserved fold with a structurally variable domain insertion, J. Biol. Chem, vol.276, pp.40055-40064, 2001.

E. J. Haining, J. Yang, R. L. Bailey, K. Khan, R. Collier et al., The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression, J. Biol. Chem, vol.287, pp.39753-39765, 2012.

J. Prox, M. Willenbrock, S. Weber, T. Lehmann, D. Schmidt-arras et al., Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10, Cell. Mol. Life Sci, vol.69, pp.2919-2932, 2012.

C. P. Blobel, ADAMs: key components in EGFR signalling and development, Nat. Rev. Mol. Cell Biol, vol.6, pp.32-43, 2005.

P. Saftig and K. Reiss, The "A disintegrin and metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential?, Eur. J. Cell Biol, vol.90, pp.527-535, 2011.

S. F. Lichtenthaler, Secretase in Alzheimer's disease: molecular identity, regulation and therapeutic potential, J. Neurochem, vol.116, pp.10-21, 2011.

R. Kopan and M. X. Ilagan, The canonical Notch signaling pathway: unfolding the activation mechanism, Cell, vol.137, pp.216-233, 2009.

E. C. Bozkulak and G. Weinmaster, Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling, Mol. Cell. Biol, vol.29, pp.5679-5695, 2009.

G. Van-tetering, P. Van-diest, I. Verlaan, E. Van-der-wall, R. Kopan et al., Metalloprotease ADAM10 is required for Notch1 site 2 cleavage, J. Biol. Chem, vol.284, pp.31018-31027, 2009.

A. J. Groot, R. Habets, S. Yahyanejad, C. M. Hodin, K. Reiss et al., Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins, Mol. Cell. Biol, vol.34, pp.2822-2832, 2014.

S. Jouannet, J. Saint-pol, L. Fernandez, V. Nguyen, S. Charrin et al., TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization, Cell. Mol. Life Sci, vol.73, pp.1895-1915, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01677606

P. J. Noy, J. Yang, J. S. Reyat, A. L. Matthews, A. E. Charlton et al., TspanC8 tetraspanins and A disintegrin and metalloprotease 10 (ADAM10) interact via their extracellular regions: evidence for distinct binding mechanisms for different TspanC8 proteins, J. Biol. Chem, vol.291, pp.3145-3157, 2016.

C. García-frigola, F. Burgaya, L. De-lecea, and E. Soriano, Pattern of expression of the tetraspanin Tspan-5 during brain development in the mouse, Mech. Dev, vol.106, pp.207-212, 2001.

V. Serru, F. Le-naour, M. Billard, D. O. Azorsa, F. Lanza et al., Selective tetraspan/integrin complexes (CD81/ a4b1, CD151/a3b1, CD151/a6b1) under conditions disrupting tetraspan interactions, Biochem. J, vol.340, pp.103-111, 1999.

R. L. Yauch, A. R. Kazarov, B. Desai, R. T. Lee, and M. E. Hemler, Direct extracellular contact between integrin 31 and TM4SF protein CD151, J. Biol. Chem, vol.275, pp.9230-9238, 2000.

L. M. Sterk, C. A. Geuijen, J. G. Van-den-berg, N. Claessen, J. J. Weening et al., Association of the tetraspanin CD151 with the laminin-binding integrins 31, 61, 64 and 71 in cells in culture and in vivo, J. Cell Sci, vol.115, pp.1161-1173, 2002.

M. Yamada, Y. Tamura, N. Sanzen, R. Sato-nishiuchi, H. Hasegawa et al., Probing the interaction of tetraspanin CD151 with integrin 31 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin 31 complex, Biochem. J, vol.415, pp.417-427, 2008.

T. D. Palmer, C. H. Martínez, C. Vasquez, K. E. Hebron, C. Jones-paris et al., Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression, Cancer Res, vol.74, pp.173-187, 2014.

M. Seigneuret, Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily, Biophys. J, vol.90, pp.212-227, 2006.

B. Zimmerman, B. Kelly, B. J. Mcmillan, T. C. Seegar, R. O. Dror et al., Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket, Cell, vol.167, pp.1041-1051, 2016.

A. Anders, S. Gilbert, W. Garten, R. Postina, and F. Fahrenholz, Regulation of the-secretase ADAM10 by its prodomain and proprotein convertases, FASEB J, vol.15, pp.1837-1839, 2001.

T. Shoham, R. Rajapaksa, C. C. Kuo, J. Haimovich, L. et al., Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments, Mol. Cell. Biol, vol.26, pp.1373-1385, 2006.

L. Tu, T. T. Sun, and G. Kreibich, Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum, Mol. Biol. Cell, vol.13, pp.4221-4230, 2002.

G. Baldwin, V. Novitskaya, R. Sadej, E. Pochec, A. Litynska et al., Tetraspanin CD151 regulates glycosylation of ()3()1 integrin, J. Biol. Chem, vol.283, pp.35445-35454, 2008.

F. Berditchevski, E. Gilbert, M. R. Griffiths, S. Fitter, L. Ashman et al., Analysis of the CD151-31 integrin and CD151tetraspanin interactions by mutagenesis, J. Biol. Chem, vol.276, pp.41165-41174, 2001.

L. Tu, X. P. Kong, T. T. Sun, and G. Kreibich, Integrity of all four transmembrane domains of the tetraspanin uroplakin Ib is required for its exit from the ER, J. Cell Sci, vol.119, pp.5077-5086, 2006.