S. Charrin, S. Jouannet, C. Boucheix, and E. Rubinstein, Tetraspanins at a glance, J. Cell Sci, vol.127, pp.3641-3648, 2014.

S. Charrin, F. Le-naour, O. Silvie, P. E. Milhiet, C. Boucheix et al., Lateral organization of membrane proteins: tetraspanins spin their web, Biochem. J, vol.420, pp.133-154, 2009.

M. E. Hemler, Tetraspanin functions and associated microdomains, Nat. Rev. Mol. Cell Biol, vol.6, pp.801-811, 2005.

M. Yáñez-mó, O. Barreiro, M. Gordon-alonso, M. Sala-valdés, and F. Sánchez-madrid, Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes, Trends Cell Biol, vol.19, pp.434-446, 2009.

V. Serru, P. Dessen, C. Boucheix, and E. Rubinstein, Sequence and expression of seven new tetraspans, Biochim. Biophys. Acta, vol.1478, pp.159-163, 2000.

S. C. Todd, V. S. Doctor, L. , and S. , Sequences and expression of six new members of the tetraspanin/TM4SF family, Biochim. Biophys. Acta, vol.1399, pp.101-104, 1998.

S. Huang, S. Yuan, M. Dong, J. Su, C. Yu et al., The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms, Genomics, vol.86, pp.674-684, 2005.

E. Dornier, F. Coumailleau, J. F. Ottavi, J. Moretti, C. Boucheix et al., TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals, J. Cell Biol, vol.199, pp.481-496, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01186988

M. Seigneuret, A. Delaguillaumie, C. Lagaudrière-gesbert, C. , and H. , Structure of the tetraspanin main extracellular domain: a partially conserved fold with a structurally variable domain insertion, J. Biol. Chem, vol.276, pp.40055-40064, 2001.

E. J. Haining, J. Yang, R. L. Bailey, K. Khan, R. Collier et al., The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression, J. Biol. Chem, vol.287, pp.39753-39765, 2012.

J. Prox, M. Willenbrock, S. Weber, T. Lehmann, D. Schmidt-arras et al., Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10, Cell. Mol. Life Sci, vol.69, pp.2919-2932, 2012.

C. P. Blobel, ADAMs: key components in EGFR signalling and development, Nat. Rev. Mol. Cell Biol, vol.6, pp.32-43, 2005.

P. Saftig and K. Reiss, The "A disintegrin and metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential?, Eur. J. Cell Biol, vol.90, pp.527-535, 2011.

S. F. Lichtenthaler, Secretase in Alzheimer's disease: molecular identity, regulation and therapeutic potential, J. Neurochem, vol.116, pp.10-21, 2011.

R. Kopan and M. X. Ilagan, The canonical Notch signaling pathway: unfolding the activation mechanism, Cell, vol.137, pp.216-233, 2009.

E. C. Bozkulak and G. Weinmaster, Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling, Mol. Cell. Biol, vol.29, pp.5679-5695, 2009.

G. Van-tetering, P. Van-diest, I. Verlaan, E. Van-der-wall, R. Kopan et al., Metalloprotease ADAM10 is required for Notch1 site 2 cleavage, J. Biol. Chem, vol.284, pp.31018-31027, 2009.

A. J. Groot, R. Habets, S. Yahyanejad, C. M. Hodin, K. Reiss et al., Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins, Mol. Cell. Biol, vol.34, pp.2822-2832, 2014.

S. Jouannet, J. Saint-pol, L. Fernandez, V. Nguyen, S. Charrin et al., TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization, Cell. Mol. Life Sci, vol.73, pp.1895-1915, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01677606

P. J. Noy, J. Yang, J. S. Reyat, A. L. Matthews, A. E. Charlton et al., TspanC8 tetraspanins and A disintegrin and metalloprotease 10 (ADAM10) interact via their extracellular regions: evidence for distinct binding mechanisms for different TspanC8 proteins, J. Biol. Chem, vol.291, pp.3145-3157, 2016.

C. García-frigola, F. Burgaya, L. De-lecea, and E. Soriano, Pattern of expression of the tetraspanin Tspan-5 during brain development in the mouse, Mech. Dev, vol.106, pp.207-212, 2001.

V. Serru, F. Le-naour, M. Billard, D. O. Azorsa, F. Lanza et al., Selective tetraspan/integrin complexes (CD81/ a4b1, CD151/a3b1, CD151/a6b1) under conditions disrupting tetraspan interactions, Biochem. J, vol.340, pp.103-111, 1999.

R. L. Yauch, A. R. Kazarov, B. Desai, R. T. Lee, and M. E. Hemler, Direct extracellular contact between integrin 31 and TM4SF protein CD151, J. Biol. Chem, vol.275, pp.9230-9238, 2000.

L. M. Sterk, C. A. Geuijen, J. G. Van-den-berg, N. Claessen, J. J. Weening et al., Association of the tetraspanin CD151 with the laminin-binding integrins 31, 61, 64 and 71 in cells in culture and in vivo, J. Cell Sci, vol.115, pp.1161-1173, 2002.

M. Yamada, Y. Tamura, N. Sanzen, R. Sato-nishiuchi, H. Hasegawa et al., Probing the interaction of tetraspanin CD151 with integrin 31 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin 31 complex, Biochem. J, vol.415, pp.417-427, 2008.

T. D. Palmer, C. H. Martínez, C. Vasquez, K. E. Hebron, C. Jones-paris et al., Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression, Cancer Res, vol.74, pp.173-187, 2014.

M. Seigneuret, Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily, Biophys. J, vol.90, pp.212-227, 2006.

B. Zimmerman, B. Kelly, B. J. Mcmillan, T. C. Seegar, R. O. Dror et al., Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket, Cell, vol.167, pp.1041-1051, 2016.

A. Anders, S. Gilbert, W. Garten, R. Postina, and F. Fahrenholz, Regulation of the-secretase ADAM10 by its prodomain and proprotein convertases, FASEB J, vol.15, pp.1837-1839, 2001.

T. Shoham, R. Rajapaksa, C. C. Kuo, J. Haimovich, L. et al., Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments, Mol. Cell. Biol, vol.26, pp.1373-1385, 2006.

L. Tu, T. T. Sun, and G. Kreibich, Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum, Mol. Biol. Cell, vol.13, pp.4221-4230, 2002.

G. Baldwin, V. Novitskaya, R. Sadej, E. Pochec, A. Litynska et al., Tetraspanin CD151 regulates glycosylation of ()3()1 integrin, J. Biol. Chem, vol.283, pp.35445-35454, 2008.

F. Berditchevski, E. Gilbert, M. R. Griffiths, S. Fitter, L. Ashman et al., Analysis of the CD151-31 integrin and CD151tetraspanin interactions by mutagenesis, J. Biol. Chem, vol.276, pp.41165-41174, 2001.

L. Tu, X. P. Kong, T. T. Sun, and G. Kreibich, Integrity of all four transmembrane domains of the tetraspanin uroplakin Ib is required for its exit from the ER, J. Cell Sci, vol.119, pp.5077-5086, 2006.

Y. Homsi, J. G. Schloetel, K. D. Scheffer, T. H. Schmidt, N. Destainville et al., The extracellular-domain is essential for the formation of CD81 tetraspanin webs, Biophys. J, vol.107, pp.100-113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123771

S. Yalaoui, S. Zougbédé, S. Charrin, O. Silvie, C. Arduise et al., Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain, PLoS Pathog, vol.4, p.1000010, 2008.

T. Gidalevitz, F. Stevens, A. , and Y. , Orchestration of secretory protein folding by ER chaperones, Biochim. Biophys. Acta, vol.1833, pp.2410-2424, 2013.

C. Arduise, T. Abache, L. Li, M. Billard, A. Chabanon et al., Tetraspanins regulate ADAM10-mediated cleavage of TNF-and epidermal growth factor, J. Immunol, vol.181, pp.7002-7013, 2008.

S. Charrin, F. Le-naour, M. Oualid, M. Billard, G. Faure et al., The major CD9 and CD81 molecular partner: identification and characterization of the complexes, J. Biol. Chem, vol.276, pp.14329-14337, 2001.

S. Charrin, F. Le-naour, V. Labas, M. Billard, J. P. Le-caer et al., EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells, Biochem. J, vol.373, pp.409-421, 2003.

O. Silvie, S. Charrin, M. Billard, J. F. Franetich, K. L. Clark et al., Cholesterol contributes to the organization of tetraspaninenriched microdomains and to CD81-dependent infection by malaria sporozoites, J. Cell Sci, vol.119, 1992.

N. Zurek, L. Sparks, and G. Voeltz, Reticulon short hairpin transmembrane domains are used to shape ER tubules, Traffic, vol.12, pp.28-41, 2011.

R. Higuchi, B. Krummel, and R. K. Saiki, A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions, Nucleic Acids Res, vol.16, pp.7351-7367, 1988.

E. M. Six, D. Ndiaye, G. Sauer, Y. Laâbi, R. Athman et al., The notch ligand 1 recruits Dlg1 at cell-cell contacts and regulates cell migration, J. Biol. Chem, vol.279, pp.55818-55826, 2004.

J. Moretti, P. Chastagner, S. Gastaldello, S. F. Heuss, A. M. Dirac et al., The translation initiation factor 3f (eIF3f) exhibits a deubiquitinase activity regulating Notch activation, PLoS Biol, vol.8, p.1000545, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00539184

C. Danglot, S. Boucheix, E. Charrin, M. Saint-pol, E. Billard et al., Lydia New insights into the tetraspanin Tspan5 using novel monoclonal antibodies, vol.292, pp.9551-9566, 2017.

, J. Biol. Chem

, Access the most updated version of this article at doi: Alerts: When a correction for this article is posted ? When this article is cited ?