R. D. Gordon, Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate, Hypertension, vol.8, pp.93-102, 1986.

F. H. Wilson, Human hypertension caused by mutations in WNK kinases, Science, vol.293, pp.1107-1112, 2001.

L. M. Boyden, Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities, Nature, vol.482, pp.98-102, 2012.

H. Louis-dit-picard, KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron, Nat. Genet, vol.44, pp.1-3, 2012.

S. Uchida, E. Sohara, T. Rai, and S. Sasaki, Regulation of with-no-lysine kinase signaling by Kelch-like proteins, Biol. Cell, vol.106, pp.45-56, 2014.

N. Mastroianni, Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome, Am. J. Hum. Genet, vol.59, pp.1019-1026, 1996.

D. B. Simon, Gitelman's variant of Barter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazidesensitive Na-Cl cotransporter, Nat. Genet, vol.12, pp.24-30, 1996.

A. C. Vitari, M. Deak, N. A. Morrice, and D. R. Alessi, The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases, Biochem. J, vol.391, pp.17-24, 2005.

T. Moriguchi, WNK1 Regulates Phosphorylation of Cation-Chloride-coupled Cotransporters via the STE20-related Kinases, SPAK and OSR1, J. Biol. Chem, vol.280, pp.42685-42693, 2005.

K. Piechotta, J. Lu, and E. Delpire, Cation Chloride Cotransporters Interact with the Stress-related Kinases Ste20-related ProlineAlanine-rich Kinase (SPAK) and Oxidative Stress Response 1 (OSR1), J. Biol. Chem, vol.277, pp.50812-50819, 2002.

F. H. Rafiqi, Role of the WNK-activated SPAK kinase in regulating blood pressure, EMBO Mol. Med, vol.2, pp.63-75, 2010.

S. Yang, SPAK-Knockout Mice Manifest Gitelman Syndrome and Impaired Vasoconstriction, J. Am. Soc. Nephrol. JASN, vol.21, pp.1868-1877, 2010.

S. Yang, Phosphorylation Regulates NCC Stability and Transporter Activity In Vivo, J. Am. Soc. Nephrol. JASN, vol.24, pp.1587-1597, 2013.

S. Yang, Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model, Cell Metab, vol.5, pp.331-344, 2007.

M. Chiga, Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade, J Cell Sci, vol.124, pp.1391-1395, 2011.

P. Chu, SPAK Deficiency Corrects Pseudohypoaldosteronism II Caused by WNK4 Mutation, Plos One, vol.8, 2013.

S. Lin, Impaired phosphorylation of Na+-K+-2Cl? cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome, Proc. Natl. Acad. Sci. USA, vol.108, pp.17538-17543, 2011.

E. Vidal-petiot, WNK1-related Familial Hyperkalemic Hypertension results from an increased expression of L-WNK1 specifically in the distal nephron, Proc. Natl. Acad. Sci. USA, vol.110, pp.14366-14371, 2013.

P. R. Grimm, Integrated compensatory network is activated in the absence of NCC phosphorylation, J. Clin. Invest, vol.125, pp.2136-2150, 2015.

S. Masilamani, Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction, Am. J. Physiol.-Ren. Physiol, vol.283, pp.648-657, 2002.

M. Vallet, Pendrin Regulation in Mouse Kidney Primarily Is Chloride-Dependent, J. Am. Soc. Nephrol, vol.17, pp.2153-2163, 2006.

J. Ponce-coria, A Novel Ste20-related Proline/Alanine-rich Kinase (SPAK)-independent Pathway Involving Calcium-binding Protein 39 (Cab39) and Serine Threonine Kinase with No Lysine Member 4 (WNK4) in the Activation of Na-K-Cl Cotransporters, J. Biol. Chem, vol.289, pp.17680-17688, 2014.

A. S. Terker, Potassium Modulates Electrolyte Balance and Blood Pressure through Effects on Distal Cell Voltage and Chloride, Cell Metab, vol.21, pp.39-50, 2015.

J. B. Wade, SPAK-mediated NCC regulation in response to low-K+ diet, Am. J. Physiol.-Ren. Physiol, vol.308, pp.923-931, 2015.

D. H. Lee, Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution, phosphorylation, and membrane complex properties, Am. J. Physiol.-Cell Physiol, vol.304, pp.147-163, 2013.

P. R. Grimm, SPAK Isoforms and OSR1 Regulate Sodium-Chloride Co-transporters in a Nephron-specific Manner, J. Biol. Chem, vol.287, pp.37673-37690, 2012.

P. J. Schultheis, Phenotype Resembling Gitelman's Syndrome in Mice Lacking the Apical Na+-Cl? Cotransporter of the Distal Convoluted Tubule, J. Biol. Chem, vol.273, pp.29150-29155, 1998.

M. Castañeda-bueno, Activation of the renal Na+:Cl? cotransporter by angiotensin II is a WNK4-dependent process, Proc. Natl. Acad. Sci. USA, vol.109, pp.7929-7934, 2012.

E. Vidal-petiot, A New Methodology for Quantification of Alternatively Spliced Exons Reveals a Highly Tissue-Specific Expression Pattern of WNK1 Isoforms, Plos One, vol.7, 2012.

M. Chávez-canales, WNK-SPAK-NCC Cascade RevisitedNovelty and Significance, Hypertension, vol.64, pp.1047-1053, 2014.

M. O'reilly, Dietary Electrolyte-Driven Responses in the Renal WNK Kinase Pathway In Vivo, J. Am. Soc. Nephrol, vol.17, pp.2402-2413, 2006.

A. Roy, Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action, Scientific REPORtS |, vol.8, pp.3433-3448, 2015.

B. P. Zambrowicz, Wnk1 kinase deficiency lowers blood pressure in mice: A gene-trap screen to identify potential targets for therapeutic intervention, Proc. Natl. Acad. Sci. USA, vol.100, pp.14109-14114, 2003.

C. R. Boyd-shiwarski, Potassium-Regulated Distal Tubule WNK Bodies are Kidney-Specific WNK1 Dependent, Mol. Biol. Cell, 2017.

T. Tsutsumi, H. Ushiro, T. Kosaka, T. Kayahara, and K. Nakano, Proline-and Alanine-rich Ste20-related Kinase Associates with F-actin and Translocates from the Cytosol to Cytoskeleton upon Cellular Stresses, J. Biol. Chem, vol.275, pp.9157-9162, 2000.

N. Picard, Defective ENaC Processing and Function in Tissue Kallikrein-deficient Mice, J. Biol. Chem, vol.283, pp.4602-4611, 2008.

J. Terris, C. A. Ecelbarger, S. Nielsen, and M. A. Knepper, Long-term regulation of four renal aquaporins in rats, Am. J. Physiol, vol.271, pp.414-422, 1996.