J. M. Albandar and T. E. Rams, Global epidemiology of periodontal diseases: an overview, Periodontol, vol.29, pp.7-10, 2000.

C. De-oliveira, R. Watt, and M. Hamer, Toothbrushing, inflammation, and risk of cardiovascular disease: results from Scottish health survey, BMJ, vol.340, p.2451, 2010.

M. P. Cullinan and G. J. Seymour, Periodontal disease and systemic illness: will the evidence ever be enough?, Periodontol, vol.62, pp.271-86, 2000.

A. Hugoson and O. Norderyd, Has the prevalence of periodontitis changed during the last 30 years?, J Clin Periodontol, vol.35, pp.338-383, 2008.

S. S. Socransky and A. D. Haffajee, The bacterial etiology of destructive periodontal disease: current concepts, J Periodontol, vol.63, pp.322-353, 1992.

A. J. Gross, K. T. Paskett, V. J. Cheever, and M. S. Lipsky, Periodontitis: a global disease and the primary care provider's role, Postgrad Med J, vol.2017, pp.1-6

M. C. Bottino, V. Thomas, G. Schmidt, Y. K. Vohra, T. G. Chu et al., Recent advances in the development of GTR/GBR membranes for periodontal regeneration-a materials perspective, Dent Mater, vol.28, pp.703-724, 2012.

Z. Sheikh, J. Qureshi, A. M. Alshahrani, H. Nassar, Y. Ikeda et al., Collagen based barrier membranes for periodontal guided bone regeneration applications, Odontology, vol.105, pp.1-12, 2017.

J. Wang, L. Wang, Z. Zhou, H. Lai, P. Xu et al., Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review, Polymers (Basel), vol.8, pp.1-20, 2016.

R. Dimitriou, G. I. Mataliotakis, G. M. Calori, and P. V. Giannoudis, The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence, BMC Med, vol.10, p.81, 2012.

R. E. Jung, G. A. Hälg, D. S. Thoma, and C. Hämmerle, A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants, Clin Oral Implants Res, vol.20, pp.162-170, 2009.

B. A. Coonts, S. L. Whitman, M. O. Donnell, A. M. Polson, G. Bogle et al., Biodegradation and biocompatibility of a guided tissue regeneration barrier membrane formed from a liquid polymer material, J Biomed Mater Res, vol.42, issue.2, pp.303-314, 1998.

B. H. Fellah, A. Fatimi, S. Quillard, C. Vinatier, O. Gauthier et al., Biomaterials The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering, Biomaterials, vol.30, pp.1568-77, 2009.

E. Mathieu, G. Lamirault, C. Toquet, P. Lhommet, E. Rederstorff et al., Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction, PLoS One, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00770250

C. Trojani, P. Weiss, J. F. Michiels, C. Vinatier, J. Guicheux et al., Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel, Biomaterials, vol.26, pp.5509-5526, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00110471

C. Merceron, S. Portron, M. Masson, J. Lesoeur, B. H. Fellah et al., The effect of two and three dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel, Cell Transplant, vol.20, pp.1575-88, 2011.

X. Struillou and H. Boutigny, Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate, J Mater Sci Mater Med, pp.1707-1724, 2011.

K. S. Anseth and J. A. Burdick, New directions in photopolymerizable biomaterials, Mrs Bull, vol.27, pp.130-136, 2002.

K. T. Nguyen and J. L. West, Photopolymerizable hydrogels for tissue engineering applications, Biomaterials, vol.23, pp.175-183, 2002.

P. Matricardi, D. Meo, C. Coviello, T. Hennink, W. E. Alhaique et al., Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering, Adv Drug Deliv Rev, vol.65, pp.1172-87, 2013.

C. M. Valmikinathan, V. J. Mukhatyar, A. Jain, L. Karumbaiah, M. Dasari et al., Photocrosslinkable chitosan based hydrogels for neural tissue engineering, Soft Matter, vol.8, pp.1964-76, 2012.

Z. Amoozgar, T. Rickett, J. Park, C. Tuchek, R. Shi et al., Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive, Acta Biomater, vol.8, pp.1849-58, 2012.

A. Viguier, C. Boyer, C. Chassenieux, L. Benyahia, J. Guicheux et al., Interpenetrated Si-HPMC/alginate hydrogels as a potential scaffold for human tissue regeneration, J Mater Sci Mater Med, vol.27, p.99, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01845501

V. K. Mourya, N. N. Inamdar, and A. Tiwari, Carboxymethyl chitosan and its applications, Adv Mater Lett, vol.1, pp.11-33, 2010.

G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C. Han et al., Progress in polymer science polymeric materials for bone and cartilage repair, Carbohydr Polym, vol.14, pp.167-82, 2014.

J. Hu, Y. Hou, H. Park, B. Choi, S. Hou et al., Visible light crosslinkable chitosan hydrogels for tissue engineering, Acta Biomater, vol.8, pp.1730-1738, 2012.

A. K. Nguyen, S. D. Gittard, A. Koroleva, S. Schlie, A. Gaidukeviciute et al., Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator, Regen Med, vol.8, pp.725-763, 2013.

S. H. Kim and C. C. Chu, Visible light induced dextran-methacrylate hydrogel formation using (?)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator, Fibers Polym, vol.10, pp.14-20, 2009.

N. Beztsinna, M. Sole, N. Taib, and I. Bestel, Bioengineered riboflavin in nanotechnology, Biomaterials, vol.80, pp.121-154, 2016.

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Adv Colloid Interface Sci, vol.99, pp.215-243, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00198799

A. Fatimi, J. Franç-ois-tassin, S. Quillard, M. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, pp.533-576, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00383358

A. Fatimi, J. F. Tassin, M. Axelos, and P. Weiss, The stability mechanisms of an injectable calcium phosphate ceramic suspension, J Mater Sci Mater Med, vol.21, pp.1799-809, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00507125

B. Engineering, T. Zurich, C. Engineering, and C. Engineering, Company N, Introduction H. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poiy (ethylene glycol) diacrylate membranes, Cell Transplant, vol.8, pp.293-306, 1999.

T. Zuliani, S. Saiagh, A. C. Knol, J. Esbelin, and B. Dréno, Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy, PLoS One, issue.8, 2013.

C. Grenade, N. Moniotte, E. Rompen, A. Vanheusden, A. Mainjot et al., A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials, Cytotechnology, vol.68, pp.2437-2485, 2016.

M. Lavergne and M. Derkaoui, Porous Polysaccharide-Based Scaffolds for Human Endothelial Progenitor Cells, Macromol Biosci, vol.2012, pp.901-911

A. Fatimi, J. F. Tassin, R. Turczyn, M. Axelos, and P. Weiss, Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization, Acta Biomater, vol.5, pp.3423-3455, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00507127

X. Struillou, H. Boutigny, Z. Badran, B. H. Fellah, O. Gauthier et al., Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate, J Mater Sci Mater Med, vol.22, pp.1707-1724, 2011.

W. Van-dijk-wolthuis, . Kettenes-van-den, J. J. Bosch, A. Van-der-kerk-van-hoof, and W. E. Hennink, Reaction of dextran with glycidyl methacrylate: an unexpected transesterification, Macromolecules, vol.30, pp.3411-3414, 1997.

D. Wang, S. Varghese, B. Sharma, I. Strehin, S. Fermanian et al., Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration, Nat Mater, vol.6, pp.385-92, 2007.

S. S. Prado, J. M. Weaver, and B. J. Love, Gelation of photopolymerized hyaluronic acid grafted with glycidyl methacrylate, Mater Sci Eng C, vol.31, pp.1767-71, 2011.

D. Loessner, C. Meinert, E. Kaemmerer, L. C. Martine, K. Yue et al., Functionalization, preparation and use of cell-laden gelatin methacryloyl?based hydrogels as modular tissue culture platforms, Nat Protoc, vol.11, pp.727-773, 2016.

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro, J Biomater Sci Polym Ed, vol.11, pp.439-57, 2012.

S. G. Bertolotti, C. M. Previtali, A. M. Rufs, and M. V. Encinas,

, Riboflavin/triethanolamine as photoinitiator system of vinyl polymerization. A mechanistic study by laser flash photolysis, Macromolecules, vol.32, pp.2920-2924, 1999.

S. Kim and C. Chu, Fabrication of a biodegradable polysaccharide hydrogel with riboflavin, vitamin B2, as a photo-initiator and L-arginine as coinitiator upon UV irradiation, J Biomed Mater Res B Appl Biomater, vol.91, pp.390-400, 2009.

I. Ahmad, K. Iqbal, M. A. Sheraz, S. Ahmed, T. Mirza et al., Photoinitiated polymerization of 2-hydroxyethyl methacrylate by riboflavin/triethanolamine in aqueous solution: a kinetic study, ISRN Pharm, p.958712, 2013.

P. Matricardi, D. Meo, C. Coviello, T. Hennink, W. E. Alhaique et al., Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering, Adv Drug Deliv Rev, vol.65, pp.1172-87, 2013.

Q. Chen, H. Chen, L. Zhu, and J. Zheng, Materials chemistry B. Fundamentals of double network hydrogels, J Mater Chem B, vol.3, pp.3645-886, 2015.

H. Park, B. Choi, J. Hu, and M. Lee, Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering, Acta Biomater, vol.9, pp.4779-86, 2013.

C. Arakawa, R. Ng, S. Tan, S. Kim, B. Wu et al., Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering, J Tissue Eng Regen Med, vol.11, pp.164-74, 2017.

A. Franz, F. König, A. Skolka, W. Sperr, P. Bauer et al., Cytotoxicity of resin composites as a function of interface area, Dent Mater, vol.23, pp.1438-1484, 2007.

, Consideration I. OECD Test Guideline, vol.432, pp.1-15, 2004.

D. Bauer, L. A. Averett, D. Smedt, A. Kleinman, M. H. Muster et al., Standardized UV-vis spectra as the foundation for a threshold-based, integrated photosafety evaluation, Regul Toxicol Pharmacol, vol.68, pp.70-75, 2014.

F. Croisier and C. Jérôme, Chitosan-based biomaterials for tissue engineering, Eur Polym J, vol.49, pp.780-92, 2013.

F. Ahmadi, Z. Oveisi, S. M. Samani, and Z. Amoozgar, Chitosan based hydrogels: characteristics and pharmaceutical applications, Res Pharm Sci, vol.10, pp.1-16, 2015.

G. Lu, B. Sheng, G. Wang, Y. Wei, Y. Gong et al., Controlling the degradation of covalently cross-linked carboxymethyl chitosan utilizing bimodal molecular weight distribution, J Biomater Appl, vol.23, pp.435-51, 2008.

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, Methacrylated glycol chitosan as a photopolymerizable biomaterial, Biomacromolecules, vol.8, pp.3758-66, 2007.

F. Hached, C. Vinatier, P. G. Pinta, P. Hulin, L. Visage et al., Polysaccharide hydrogels support the long-Term viability of encapsulated human mesenchymal stem cells and their ability to secrete immunomodulatory factors, Stem Cells Int, vol.2017, pp.6-8, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01844720

F. Nativel, D. Renard, F. Hached, P. Pinta, C. D. Arros et al., Application of millifluidics to encapsulate and support viable human mesenchymal stem cells in a polysaccharide hydrogel, Int J Mol Sci, vol.19, issue.7, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01844534

L. Moussa, G. Pattappa, B. Doix, S. Benselama, C. Demarquay et al., A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage, Biomaterials, vol.115, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01845123

X. Struillou, A. Fruchet, M. Rakic, Z. Badran, G. Rethore et al., Evaluation of a hydrogel membrane on bone regeneration in furcation periodontal defects in dogs, Dent Mater J, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02060762