Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

Olivier Commowick, Christian Barillot

To cite this version:
MSSEG Miccai 2016 Challenge: Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

Olivier Commowick, Christian Barillot and FLI / OFSEP

Workshop FLI-SFR – October 11, 2018

Background: multiple sclerosis

- Highly variable evolution
- Clinical classification in 4 types
- Two main stages
 - Early: variable evolution
 - Later: parallel evolution

Lesion segmentation in MS

- Lesion load and lesion count crucial in MS
 - Part of diagnosis (McDonald criteria)
 - Evaluation of drug effectiveness

- Delineation of lesion tedious
 - Manual → time consuming
 - Subject to intra- / inter-individual variability

➡ Automatic segmentation is key

Why a segmentation challenge?

- A huge number of automatic segmentation methods
 - Tissue classification & outlier detection
 - Machine learning (random forests, deep, etc.)
 - Many others

- Large variety of modalities used
 - T1, T2, FLAIR, PD…

- Large variety of implementations
 - GPU, Matlab, Python, C++ …

5 surveys in the last 5 years involving 50+ methods
Why a segmentation challenge?

• Evaluation complicated
 • Each method evaluated on a specific set
 • No comparison possible
• The challenge concept
 • Have all methods evaluated on a common dataset
 • Examples: MICCAI 2008, IEEE-ISBI 2015
• Main drawbacks
 • Possibility to adapt parameters to each patient
 • Ground truth not well defined

Styner et al., 2008. 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation. Insight journal.
An OFSEP and FLI challenge @ MICCAI

- Evaluation objectives
 - Evaluate algorithms developed in the community
 - In a well defined computational framework (FLI)
 - Same set of parameters for all images
 - With respect to a solid ground truth
- Additional objectives (OFSEP)
 - Evaluate lesion segmentation algorithms for MS
 - Fully automatic, on standardized images
 - Standardized but different centers

http://www.ofsep.org
MICCAI challenge: The Data

- Challenge data
 - 53 patients from 4 different scanners
 - Modalities: 3DFLAIR, T2/DP, 3DT1, 3DT1-Gado
 - OFSEP consensus
 - 7 manual segmentations for each patient

- Two datasets drawn
 - Training (open): challengers tune their algorithms
 - Testing (closed): evaluation database

<table>
<thead>
<tr>
<th>Center / #exams</th>
<th>Training set</th>
<th>Testing set</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 - Siemens Verio 3T (Rennes)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>03 - GE Discovery 3T (Bordeaux)</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>07 - Siemens Aera 1.5T (Lyon)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>08 - Philips Ingenia 3T (Lyon)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>38</td>
</tr>
</tbody>
</table>
Dataset examples (with experts consensus)

FLAIR from center 01

FLAIR from center 03
Not in the Training

FLAIR from center 07

FLAIR from center 08
A well defined execution and evaluation framework

• Pipelines provided by the challengers
 • Black box (docker) including their optimal parameters
 • Parameters chosen or optimized on training set

• Pipelines started automatically on testing set
 • On France Life Imaging (FLI-IAM) computing platform
 • By FLI-IAM project engineers
 • Ensures a uniform set of parameters on the whole testing database

https://portal.fli-iam.irisa.fr/msseg-challenge/overview
France Life Imaging computing platform
Challenge participations

- Thirteen pipelines including a variety of algorithms
 - Machine learning:
 - Random forests
 - Deep learning
 - Model Inference (Bayes, Markov, …):
 - Tissue classification approaches

- Training phase: 2 months *(at home)*
- Integration phase: 3 to 4 months *(on FLI-IAM system)*
 - Docker packaging and integration help by FLI
- Evaluation (independent from challengers): 2 months
Which evaluation? Metric categories

- Evaluation of MS lesions segmentation: tough topic
 - Which ground truth? → LOP STAPLE consensus
 - What is of interest to the clinician?

- Two metric categories:
 - Detection: are the lesions detected, independently of the precision of their contours? → \textit{F1 score}
 - Segmentation: are the lesions contours exact?
 - Overlap → \textit{Dice score}
 - Surface-based measures → \textit{Mean surface distance}

https://portal.fli-iam.irisa.fr/msseg-challenge/evaluation
No lesion case results

<table>
<thead>
<tr>
<th>Evaluated method</th>
<th>Lesion volume (cm3)</th>
<th>Number of lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team 1</td>
<td>8.25</td>
<td>18</td>
</tr>
<tr>
<td>Team 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Team 3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Team 4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Team 5</td>
<td>28.44</td>
<td>522</td>
</tr>
<tr>
<td>Team 6</td>
<td>0.47</td>
<td>7</td>
</tr>
<tr>
<td>Team 7</td>
<td>5.99</td>
<td>168</td>
</tr>
<tr>
<td>Team 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Team 9</td>
<td>2.55</td>
<td>33</td>
</tr>
<tr>
<td>Team 10</td>
<td>11.09</td>
<td>31</td>
</tr>
<tr>
<td>Team 11</td>
<td>3.44</td>
<td>42</td>
</tr>
<tr>
<td>Team 12</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>Team 13</td>
<td>0.07</td>
<td>4</td>
</tr>
</tbody>
</table>
Visual results for center 01
Visual results for center 03 (not in the training phase)
Groups of methods: Comparison to Experts

- Automatic #1
- Consensus of Automatic
- Experts
- Automatic #2

Graph showing F1 score vs. Dice score with different groups and their comparisons.
Segmentation performance vs lesion load

Average Dice as a function of total lesion load

$R^2 = 0.82197$
Take home messages from the challenge

• Standardized acquisitions necessary for MS
 • Yet differences remain
 • Need for large database with many expert delineations (i.e. big issue in medical imaging)

• Automatic computing platform
 • Great tool for
 • challenges organization
 • Open Science
 • Certification of algorithms (e.g. industrial solutions)
 • Fair comparison → no parameter tuning during test
 • No work from challengers after pipeline integration

• Main results
 • Individual algorithms still trailing behind experts
 • Unknown images lead to more failures