M. Adam, J. Bastide, S. J. Candau, J. P. Cohen-addad, J. F. Joanny et al., Physical properties of polymeric gels, 1996.

K. S. Anseth, C. N. Bowman, and L. Brannon-peppas, Mechanical properties of hydrogels and their experimental determination, Biomaterials, vol.17, issue.17, pp.87644-87651, 1996.
DOI : 10.1016/0142-9612(96)87644-7

R. P. Apkarian and E. R. Wright, Cryo and cryo-etch methods for quality preservation of hydrogels imaged at high magnification by low temperature SEM, Microscopy and Microanalysis, vol.11, pp.1088-1089, 2005.

N. Asadi, E. Alizadeh, R. Salehi, B. Khalandi, S. Davaran et al., Nanocomposite hydrogels for cartilage tissue engineering: A review, Nanomedicine, and Biotechnology, vol.46, issue.3, pp.465-471, 2018.

R. Aston, K. Sewell, T. Klein, G. Lawrie, and L. Grøndahl, Evaluation of the impact of freezing preparation techniques on the characterisation of alginate hydrogels by cryo-SEM, European Polymer Journal, vol.82, pp.1-15, 2016.

M. J. Baker, T. T. Denton, and C. Herr, An explanation for why it is difficult to form slush nitrogen from liquid nitrogen used previously for this purpose, Cryobiology, vol.66, issue.1, pp.43-46, 2013.

K. Balagangadharan, S. Dhivya, and N. Selvamurugan, Chitosan based nanofibers in bone tissue engineering, International Journal of Biological Macromolecules, vol.104, pp.1372-1382, 2017.
DOI : 10.1016/j.ijbiomac.2016.12.046

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.35-35, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00198799

N. Buchtová, G. Réthoré, C. Boyer, J. Guicheux, F. Rambaud et al.,

L. Bideau and J. , Nanocomposite hydrogels for cartilage tissue engineering: Mesoporous silica nanofibers interlinked with siloxane derived polysaccharide, Journal of Materials Science: Materials in Medicine, vol.24, issue.8, pp.1875-1884, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00980258

D. Caccavo, S. Cascone, G. Lamberti, and A. A. Barba, Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour, Chemical Society Reviews, vol.47, issue.7, pp.2357-2373, 2018.

P. Calvert, Hydrogels for soft machines, Advanced Materials, vol.21, issue.7, pp.743-756, 2009.
DOI : 10.1002/adma.200800534

M. Chau, K. J. De-france, B. Kopera, V. R. Machado, S. Rosenfeldt et al.,

E. Kumacheva, Composite hydrogels with tunable anisotropic morphologies and mechanical properties, Chemistry of Materials, vol.28, issue.10, pp.3406-3415, 2016.

K. Deligkaris, T. S. Tadele, W. Olthuis, . Van-den, and A. Berg, Hydrogel-based devices for biomedical applications, Sensors and Actuators B: Chemical, vol.147, issue.2, pp.765-774, 2010.
DOI : 10.1016/j.snb.2010.03.083

J. L. Drury and D. J. Mooney, Hydrogels for tissue engineering: Scaffold design variables and applications, Synthesis of Biomimetic Polymers, vol.24, issue.24, pp.340-345, 2003.
DOI : 10.1016/s0142-9612(03)00340-5

C. Efthymiou, M. A. Williams, and K. M. Mcgrath, Revealing the structure of high-water content biopolymer networks: Diminishing freezing artefacts in cryo-SEM images, Food Hydrocolloids, vol.73, pp.203-212, 2017.

A. K. Gaharwar, N. A. Peppas, and A. Khademhosseini, Nanocomposite hydrogels for biomedical applications, Biotechnology and Bioengineering, vol.111, issue.3, 2014.
DOI : 10.1002/bit.25160

URL : http://europepmc.org/articles/pmc3924876?pdf=render

G. R. Hendrickson and L. Andrew-lyon, Bioresponsive hydrogels for sensing applications, Soft Matter, vol.5, issue.1, pp.29-35, 2009.
DOI : 10.1039/b811620b

N. Henry, J. Clouet, J. Le-bideau, C. Le-visage, and J. Guicheux, Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems, Biotechnology Advances, vol.36, issue.1, pp.281-294, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01718260

M. Holz, S. R. Heil, and A. Sacco, Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements, Physical Chemistry Chemical Physics, vol.2, issue.20, pp.4740-4742, 2000.

D. Jaikumar, K. M. Sajesh, S. Soumya, T. R. Nimal, K. P. Chennazhi et al.,

R. Jayakumar, Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering, International Journal of Biological Macromolecules, vol.74, pp.318-326, 2015.

M. S. Jhon and J. D. Andrade, Water and hydrogels, Journal of Biomedical Materials Research, vol.7, issue.6, pp.509-522, 1973.

Y. Lang, T. Jiang, S. Li, and L. Zheng, Study on physicochemical properties of thermosensitive hydrogels constructed using graft-copolymers of poly (N-isopropylacrylamide) and Guar gum, Journal of Applied Polymer Science, vol.108, issue.6, pp.3473-3479, 2008.

X. Li, Y. Cui, J. Xiao, and L. Liao, Hydrogel-hydrogel composites: The interfacial structure and interaction between water and polymer chains, Journal of Applied Polymer Science, vol.108, issue.6, pp.3713-3719, 2008.
DOI : 10.1002/app.27854

A. Nojoomi, E. Tamjid, A. Simchi, S. Bonakdar, and P. Stroeve, Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties, International Journal of Polymeric Materials and Polymeric Biomaterials, vol.66, issue.3, pp.105-114, 2017.
DOI : 10.1080/00914037.2016.1182914

URL : https://cloudfront.escholarship.org/dist/prd/content/qt82d8w5ch/qt82d8w5ch.pdf?t=ozn2ab

K. Numata, T. Katashima, and T. Sakai, State of water, molecular structure, and cytotoxicity of silk hydrogels, Biomacromolecules, vol.12, issue.6, pp.2137-2144, 2011.

J. Ostrowska-czubenko and M. Gierszewska-dru?y?ska, Effect of ionic crosslinking on the water state in hydrogel chitosan membranes, Carbohydrate Polymers, vol.77, issue.3, pp.590-598, 2009.

O. V. Petrov and I. Furó, NMR cryoporometry: Principles, applications and potential, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.54, issue.2, pp.97-122, 2009.
DOI : 10.1016/j.pnmrs.2008.06.001

X. Qu, A. Wirsén, and A. Albertsson, Novel pH-sensitive chitosan hydrogels: Swelling behavior and states of water, Polymer, issue.12, pp.4589-4598, 2000.
DOI : 10.1016/s0032-3861(99)00685-0

F. Rambaud, K. Vallé, S. Thibaud, B. Julián-lópez, and C. Sanchez, One-pot synthesis of functional helicoidal hybrid organic-inorganic nanofibers with periodically organized mesoporosity, Advanced Functional Materials, vol.19, issue.18, pp.2896-2905, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411441

J. Rault, R. Neffati, and P. Judeinstein, Melting of ice in porous glass: Why water and solvents confined in small pores do not crystallize?, The European Physical Journal B-Condensed Matter and Complex Systems, vol.36, issue.4, pp.627-637, 2003.

Y. Sakai, S. Kuroki, and M. Satoh, Water properties in the super-salt-resistive gel probed by NMR and DSC, Langmuir, vol.24, issue.13, pp.6981-6987, 2008.

M. Sansinena, M. V. Santos, N. Zaritzky, and J. Chirife, Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation, Theriogenology, vol.77, issue.8, pp.1717-1721, 2012.

N. S. Satarkar, D. Biswal, and J. Z. Hilt, Hydrogel nanocomposites: A review of applications as remote controlled biomaterials, Soft Matter, vol.6, issue.11, pp.2364-2371, 2010.

Y. Sekine and T. Ikeda-fukazawa, Structural changes of water in a hydrogel during dehydration, The Journal of Chemical Physics, vol.130, issue.3, 2009.

J. Shapiro and M. Oyen, Hydrogel composite materials for tissue engineering scaffolds, JOM, vol.65, issue.4, pp.505-516, 2013.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Hydrogels in regenerative medicine, Advanced Materials, vol.21, pp.3307-3329, 2009.

E. O. Stejskal and J. E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, The Journal of Chemical Physics, vol.42, issue.1, pp.288-292, 1965.

S. Van-vlierberghe, P. Dubruel, and E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review, Biomacromolecules, vol.12, issue.5, pp.1387-1408, 2011.

O. Wichterle and D. Lim, Hydrophilic gels for biological use, Nature, vol.185, issue.4706, pp.117-118, 1960.

Y. Yang, X. Wang, F. Yang, H. Shen, and D. Wu, A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable doublenetwork hydrogels, Advanced Materials, vol.28, issue.33, pp.7178-7184, 2016.

H. Yoshida, T. Hatakeyama, and H. Hatakeyama, Characterization of water in polysaccharide hydrogels by DSC, Journal of Thermal Analysis, vol.40, issue.2, pp.483-489, 1993.

P. Yu, R. Bao, X. Shi, W. Yang, and M. Yang, Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering, Carbohydrate Polymers, vol.155, pp.507-515, 2017.

H. Zhang, D. R. Dunphy, X. Jiang, H. Meng, B. Sun et al., Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs pyrolytic, Journal of the American Chemical Society, vol.134, issue.38, pp.15790-15804, 2012.