O. Acuto and F. Michel, CD28-mediated co-stimulation: A quantitative support for TCR signalling, Nat. Rev. Immunol, vol.3, pp.939-951, 2003.

O. S. Qureshi, Y. Zheng, K. Nakamura, K. Attridge, C. Manzotti et al., Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4, Science, vol.332, pp.600-603, 2011.

C. J. Wang, F. Heuts, V. Ovcinnikovs, L. Wardzinski, C. Bowers et al., CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement, Proc. Natl. Acad. Sci, vol.112, pp.524-529, 2015.

L. E. Marengere, P. Waterhouse, G. S. Duncan, H. W. Mittrucker, G. S. Feng et al., Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4, Science, vol.272, pp.1170-1173, 1996.
DOI : 10.1126/science.272.5265.1170

M. Martin, H. Schneider, A. Azouz, and C. E. Rudd, Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function, J. Exp. Med, vol.194, pp.1675-1681, 2001.

P. Waterhouse, J. M. Penninger, E. Timms, A. Wakeham, A. Shahinian et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4, Science, vol.270, pp.985-988, 1995.
DOI : 10.1126/science.270.5238.985

E. A. Tivol, F. Borriello, A. N. Schweitzer, W. P. Lynch, J. A. Bluestone et al., Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4, Immunity, vol.3, pp.541-547, 1995.

H. Ueda, J. M. Howson, L. Esposito, J. Heward, H. Snook et al., Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease, Nature, vol.423, pp.506-511, 2003.

L. Ciszak, I. Frydecka, D. Wolowiec, A. Szteblich, and A. Kosmaczewska, Patients with chronic lymphocytic leukaemia (CLL) differ in the pattern of CTLA-4 expression on CLL cells: The possible implications for immunotherapy with CTLA-4 blocking antibody, Tumour Biol, vol.37, pp.4143-4157, 2016.

M. J. Butte, M. E. Keir, T. B. Phamduy, A. H. Sharpe, and G. J. Freeman, Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses, Immunity, vol.27, pp.111-122, 2007.
DOI : 10.1016/j.immuni.2007.05.016

URL : https://doi.org/10.1016/j.immuni.2007.05.016

N. Poirier, A. M. Azimzadeh, T. Zhang, N. Dilek, C. Mary et al., Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation, Sci. Transl. Med, vol.2, 2010.
DOI : 10.1126/scitranslmed.3000116

URL : http://europepmc.org/articles/pmc2860737?pdf=render

N. Dilek, N. Poirier, P. Hulin, F. Coulon, C. Mary et al., Targeting CD28, CTLA-4 and PD-L1 costimulation differentially controls immune synapses and function of human regulatory and conventional T-cells, PLoS ONE, vol.8, 2013.
DOI : 10.1371/journal.pone.0083139

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0083139&type=printable

L. M. Charbonnier, B. Vokaer, P. H. Lemaitre, K. A. Field, O. Leo et al., CTLA4-Ig restores rejection of MHC class-II mismatched allografts by disabling IL-2-expanded regulatory T cells, Am. J. Transplant, vol.12, pp.2313-2321, 2012.
DOI : 10.1111/j.1600-6143.2012.04184.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-6143.2012.04184.x/pdf

I. Vogel, A. Kasran, J. Cremer, Y. J. Kim, L. Boon et al., CD28/CTLA-4/B7 costimulatory pathway blockade affects regulatory T-cell function in autoimmunity, Eur J. Immunol, vol.45, pp.1832-1841, 2015.
DOI : 10.1002/eji.201445190

M. Zaitsu, F. Issa, J. Hester, B. Vanhove, and K. J. Wood, Selective blockade of CD28 on human T cells facilitates regulation of alloimmune responses, JCI Insight, vol.2, p.89381, 2017.

B. Vanhove, G. Laflamme, F. Coulon, M. Mougin, P. Vusio et al., Selective blockade of CD28 and not CTLA-4 with a single-chain Fv-alpha1-antitrypsin fusion antibody, Blood, vol.102, pp.564-570, 2003.

S. J. Suchard, P. M. Davis, S. Kansal, D. K. Stetsko, R. Brosius et al., A monovalent anti-human CD28 domain antibody antagonist: Preclinical efficacy and safety, J. Immunol, vol.191, pp.4599-4610, 2013.
DOI : 10.4049/jimmunol.1300470

URL : http://www.jimmunol.org/content/jimmunol/191/9/4599.full.pdf

S. M. Krummey, T. L. Floyd, D. Liu, M. E. Wagener, M. Song et al., Candida-elicited murine Th17 cells express high Ctla-4 compared with Th1 cells and are resistant to costimulation blockade, J. Immunol, vol.192, pp.2495-2504, 2014.
DOI : 10.4049/jimmunol.1301332

URL : http://www.jimmunol.org/content/jimmunol/192/5/2495.full.pdf

N. Poirier, G. Blancho, and B. Vanhove, CD28-specific immunomodulating antibodies: What can be learned from experimental models?, Am. J. Transplant, vol.12, pp.1682-1690, 2012.
DOI : 10.1111/j.1600-6143.2012.04032.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-6143.2012.04032.x/pdf

C. Mary, F. Coulon, N. Poirier, N. Dilek, B. Martinet et al., Antagonist properties of monoclonal antibodies targeting human CD28: Role of valency and the heavy-chain constant domain. mAbs, vol.5, pp.47-55, 2013.

T. J. Dengler, G. Szabo, B. Sido, W. Nottmeyer, R. Zimmerman et al., Prolonged allograft survival but no tolerance induction by modulating CD28 antibody JJ319 after high-responder rat heart transplantation, Transplantation, vol.67, pp.392-398, 1999.
DOI : 10.1097/00007890-199902150-00009

G. Suntharalingam, M. R. Perry, S. Ward, S. J. Brett, A. Castello-cortes et al., Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412, N. Engl. J. Med, vol.355, pp.1018-1028, 2006.

F. Luhder, Y. Huang, K. M. Dennehy, C. Guntermann, I. Muller et al., Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists, J. Exp. Med, vol.197, pp.955-966, 2003.

M. S. Jang, F. Pan, L. M. Erickson, O. Fisniku, G. Crews et al., A blocking anti-CD28-specific antibody induces long-term heart allograft survival by suppression of the PKC theta-JNK signal pathway, Transplantation, vol.85, pp.1051-1055, 2008.

S. P. Raychaudhuri, S. Kundu-raychaudhuri, K. Tamura, T. Masunaga, K. Kubo et al., Fc-Silent, Anti-CD28 antibody, improves psoriasis in the SCID mouse-psoriasis xenograft model, J. Investig. Dermatol, vol.128, pp.1969-1976, 2008.

S. L. Shiao, J. M. Mcniff, T. Masunaga, K. Tamura, K. Kubo et al., Immunomodulatory properties of FK734, a humanized anti-CD28 monoclonal antibody with agonistic and antagonistic activities, Transplantation, vol.83, pp.304-313, 2007.

N. Poirier, C. Mary, N. Dilek, J. Hervouet, D. Minault et al., Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent Fab' antibody, Am. J. Transplant, vol.12, pp.2630-2640, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02167934

N. Poirier, G. Blancho, M. Hiance, C. Mary, T. Van-assche et al., First-in-Human Study in Healthy Subjects with FR104, a Pegylated Monoclonal Antibody Fragment Antagonist of CD28, J. Immunol, vol.197, pp.4593-4602, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02150993

M. Pasparakis, I. Haase, and F. O. Nestle, Mechanisms regulating skin immunity and inflammation, Nat. Rev. Immunol, vol.14, pp.289-301, 2014.

F. O. Nestle, D. H. Kaplan, J. Barker, and . Psoriasis, N. Engl. J. Med, vol.361, pp.496-509, 2009.

W. H. Boehncke and N. C. Brembilla, Unmet Needs in the Field of Psoriasis: Pathogenesis and Treatment, Clin. Rev. Allergy Immunol, 2017.

J. E. Hawkes, T. C. Chan, and J. G. Krueger, Psoriasis pathogenesis and the development of novel targeted immune therapies, J. Allergy Clin. Immunol, vol.140, pp.645-653, 2017.

J. R. Abrams, M. G. Lebwohl, C. A. Guzzo, B. V. Jegasothy, M. T. Goldfarb et al., CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris, J. Clin. Investig, vol.103, pp.1243-1252, 1999.

P. J. Mease, A. B. Gottlieb, D. Van-der-heijde, O. Fitzgerald, A. Johnsen et al., Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis, Ann. Rheum. Dis, vol.76, pp.1550-1558, 2017.

S. M. Krummey, J. A. Cheeseman, J. A. Conger, P. S. Jang, A. K. Mehta et al., CTLA-4 expression on Th17 cells results in increased sensitivity to CTLA-4 coinhibition and resistance to belatacept, Am. J. Transplant, vol.14, pp.607-614, 2014.

P. Malvezzi, T. Jouve, and L. Rostaing, Costimulation Blockade in Kidney Transplantation: An Update, Transplantation, vol.100, pp.2315-2323, 2016.

F. Vincenti, B. Charpentier, Y. Vanrenterghem, L. Rostaing, B. Bresnahan et al., A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal

, Am. J. Transplant, vol.10, pp.535-546, 2010.

F. Issa, J. Hester, R. Goto, S. N. Nadig, T. E. Goodacre et al., Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model, Transplantation, vol.90, pp.1321-1327, 2010.

T. Zhang, S. Fresnay, E. Welty, N. Sangrampurkar, E. Rybak et al., Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner, Am. J. Transplant, vol.11, pp.1599-1609, 2011.

F. Issa, J. Hester, K. Milward, and K. J. Wood, Homing of regulatory T cells to human skin is important for the prevention of alloimmune-mediated pathology in an in vivo cellular therapy model, PLoS ONE, vol.7, 2012.

N. Ali, B. Flutter, R. S. Rodriguez, E. Sharif-paghaleh, L. D. Barber et al., Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rgammanull mice display a T-effector memory phenotype, PLoS ONE, vol.7, 2012.

P. Tan, C. Anasetti, J. A. Hansen, J. Melrose, M. Brunvand et al., Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1, J. Exp. Med, vol.177, pp.165-173, 1993.

L. V. Riella, T. Liu, J. Yang, S. Chock, T. Shimizu et al., Deleterious effect of CTLA4-Ig on a Treg-dependent transplant model, Am. J. Transplant, vol.12, pp.846-855, 2012.

J. Levitsky, J. Miller, X. Huang, D. Chandrasekaran, L. Chen et al., Inhibitory effects of belatacept on allospecific regulatory T-cell generation in humans, Transplantation, vol.96, pp.689-696, 2013.

M. Gilliet, C. Conrad, M. Geiges, A. Cozzio, W. Thurlimann et al., Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors, Arch. Dermatol, vol.140, pp.1490-1495, 2004.

U. Patel, N. M. Mark, B. C. Machler, and V. J. Levine, Imiquimod 5% cream induced psoriasis: A case report, summary of the literature and mechanism, Br. J. Dermatol, vol.164, pp.670-672, 2011.

N. Rajan and J. A. Langtry, Generalized exacerbation of psoriasis associated with imiquimod cream treatment of superficial basal cell carcinomas, Clin. Exp. Dermatol, vol.31, pp.140-141, 2006.

H. Vinter, L. Iversen, T. Steiniche, K. Kragballe, and C. Johansen, Aldara(R)-induced skin inflammation: Studies of patients with psoriasis, Br. J. Dermatol, vol.172, pp.345-353, 2015.

L. Van-der-fits, S. Mourits, J. S. Voerman, M. Kant, L. Boon et al., Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis, J. Immunol, vol.182, pp.5836-5845, 2009.

S. Pantelyushin, S. Haak, B. Ingold, P. Kulig, F. L. Heppner et al., Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice, J. Clin. Investig, vol.122, pp.2252-2256, 2012.

Y. Cai, X. Shen, C. Ding, C. Qi, K. Li et al., Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation, Immunity, vol.35, pp.596-610, 2011.

N. Poirier, M. Chevalier, C. Mary, J. Hervouet, D. Minault et al., Selective CD28 antagonist prevents induced skin inflammation in non-human primates, Exp. Dermatol, vol.25, pp.233-234, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02150253

K. Kobayashi, K. Kaneda, and T. Kasama, Immunopathogenesis of delayed-type hypersensitivity, Microsc. Res. Tech, vol.53, pp.241-245, 2001.

N. Poirier, T. Haudebourg, C. Brignone, N. Dilek, J. Hervouet et al., Antibody-mediated depletion of lymphocyte-activation gene-3 (LAG-3(+))-activated T lymphocytes prevents delayed-type hypersensitivity in non-human primates, Clin. Exp. Immunol, vol.164, pp.265-274, 2011.

N. Poirier, M. Chevalier, C. Mary, J. Hervouet, D. Minault et al., Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates, J. Immunol, vol.196, pp.274-283, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02150299

&. Hart, B. A. Gran, B. Weissert, and R. , EAE: Imperfect but useful models of multiple sclerosis, Trends Mol. Med, vol.17, pp.119-125, 2011.

K. G. Haanstra, K. Dijkman, N. Bashir, J. Bauer, C. Mary et al., Selective blockade of CD28-mediated T cell costimulation protects rhesus monkeys against acute fatal experimental autoimmune encephalomyelitis, J. Immunol, vol.194, pp.1454-1466, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02148517

K. G. Haanstra, S. O. Hofman, D. M. Estevao, E. L. Blezer, J. Bauer et al., Antagonizing the alpha4beta1 integrin, but not alpha4beta7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis, J. Immunol, vol.190, pp.1961-1973, 2013.

M. P. Vierboom, E. Breedveld, Y. S. Kap, C. Mary, N. Poirier et al., Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis, Clin. Exp. Immunol, vol.183, pp.405-418, 2016.

S. Yao, Y. Zhu, G. Zhu, M. Augustine, L. Zheng et al., Immunity, vol.34, 2011.

S. Ville, N. Poirier, G. Blancho, and B. Vanhove, Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in, Transplantation: Impact on Memory T Cells? Front. Immunol, vol.6, p.411, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02148498

S. M. Whitcup and R. B. Nussenblatt, Immunologic mechanisms of uveitis. New targets for immunomodulation, Arch. Ophthalmol, vol.115, pp.520-525, 1997.

D. C. Gritz and I. G. Wong, Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study, Ophthalmology, vol.111, pp.491-500, 2004.

C. Comarmond, B. Wechsler, B. Bodaghi, P. Cacoub, and D. Saadoun, Biotherapies in Behcet's disease, Autoimmun. Rev, vol.13, pp.762-769, 2014.

C. Selmi and M. E. Gershwin, Diagnosis and classification of reactive arthritis, Autoimmun. Rev, vol.13, pp.546-549, 2014.

Y. Jamilloux, L. Kodjikian, C. Broussolle, and P. Seve, Sarcoidosis and uveitis, Autoimmun. Rev, vol.13, pp.840-849, 2014.

V. M. Sakata, F. T. Silva, C. E. Hirata, W. Y. Takahashi, R. A. Costa et al., Choroidal bulging in patients with Vogt-Koyanagi-Harada disease in the non-acute uveitic stage, J. Ophthalmic Inflamm

R. Agrawal, C. Lee, S. Phatak, and C. Pavesio, Immunopharmacotherapy of non-infectious uveitis: Where do we stand? Expert Opin, Biol. Ther, vol.14, pp.1719-1722, 2014.

R. B. Nussenblatt, E. Fortin, R. Schiffman, L. Rizzo, J. Smith et al., Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: A phase I/II clinical trial, Proc. Natl. Acad. Sci, vol.96, pp.7462-7466, 1999.

J. R. Smith, R. D. Levinson, G. N. Holland, D. A. Jabs, M. R. Robinson et al., Differential efficacy of tumor necrosis factor inhibition in the management of inflammatory eye disease and associated rheumatic disease, Arthritis Rheum, vol.45, pp.252-257, 2001.

P. H. Papotto, E. B. Marengo, L. R. Sardinha, A. C. Goldberg, and L. V. Rizzo, Immunotherapeutic strategies in autoimmune uveitis, Autoimmun. Rev, vol.13, pp.909-916, 2014.

R. R. Caspi, F. G. Roberge, C. C. Chan, B. Wiggert, G. J. Chader et al., A new model of autoimmune disease. Experimental autoimmune uveoretinitis induced in mice with two different retinal antigens, J. Immunol, vol.140, pp.1490-1495, 1988.

L. V. Rizzo, P. Silver, B. Wiggert, F. Hakim, R. T. Gazzinelli et al., Establishment and characterization of a murine CD4+ T cell line and clone that induce experimental autoimmune uveoretinitis in B10.A mice, J. Immunol, vol.156, pp.1654-1660, 1996.

J. Tang, W. Zhu, P. B. Silver, S. B. Su, C. C. Chan et al., Autoimmune uveitis elicited with antigen-pulsed dendritic cells has a distinct clinical signature and is driven by unique effector mechanisms: Initial encounter with autoantigen defines disease phenotype, J. Immunol, vol.178, pp.5578-5587, 2007.

D. Luger, P. B. Silver, J. Tang, D. Cua, Z. Chen et al., Either a Th17 or a Th1 effector response can drive autoimmunity: Conditions of disease induction affect dominant effector category, J. Exp. Med, vol.205, pp.799-810, 2008.

P. H. Papotto, E. B. Marengo, L. R. Sardinha, K. I. Carvalho, A. E. De-carvalho et al., Novel CD28 antagonist mPEG PV1-Fab' mitigates experimental autoimmune uveitis by suppressing CD4+ T lymphocyte activation and IFN-gamma production, PLoS ONE, vol.12, 2017.

P. B. Silver, K. S. Hathcock, C. C. Chan, B. Wiggert, and R. R. Caspi, Blockade of costimulation through B7/CD28 inhibits experimental autoimmune uveoretinitis, but does not induce long-term tolerance, J. Immunol, vol.165, pp.5041-5047, 2000.

J. T. Merrill, Co-stimulatory molecules as targets for treatment of lupus, Clin. Immunol, vol.148, pp.369-375, 2013.

B. K. Finck, P. S. Linsley, and D. Wofsy, Treatment of murine lupus with CTLA4Ig, Science, vol.265, pp.1225-1227, 1994.

R. Furie, K. Nicholls, T. T. Cheng, F. Houssiau, R. Burgos-vargas et al., Efficacy and safety of abatacept in lupus nephritis: A twelve-month, randomized, double-blind study, Arthritis Rheum, vol.66, pp.379-389, 2014.

J. T. Merrill, R. Burgos-vargas, R. Westhovens, A. Chalmers, D. Cruz et al., The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: Results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial, Arthritis Rheum, vol.62, pp.3077-3087, 2010.

L. Laurent, A. Le-fur, R. L. Bloas, M. Neel, C. Mary et al., Prevention of lupus nephritis development in NZB/NZW mice by selective blockade of CD28, Eur. J. Immunol, vol.47, pp.1368-1376, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02155317

J. Abe, S. Ueha, J. Suzuki, Y. Tokano, K. Matsushima et al., Increased Foxp3(+) CD4(+) regulatory T cells with intact suppressive activity but altered cellular localization in murine lupus, Am. J. Pathol, vol.173, pp.1682-1692, 2008.

F. Haspot, C. Seveno, A. S. Dugast, F. Coulon, K. Renaudin et al., Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR class II B7 regulatory cells, Am. J. Transplant, vol.5, pp.2339-2348, 2005.

S. Ville, N. Poirier, J. Branchereau, V. Charpy, S. Pengam et al., Anti-CD28 Antibody and Belatacept Exert Differential Effects on Mechanisms of Renal Allograft Rejection, J. Am. Soc. Nephrol, vol.27, pp.3577-3588, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02150329

R. Shi, M. Honczarenko, S. Zhang, C. Fleener, J. Mora et al., Pharmacodynamic, and Safety Profile of a Novel Anti-CD28 Domain Antibody Antagonist in Healthy Subjects, J. Clin. Pharmacol, vol.57, pp.161-172, 2017.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2017 by the authors. Licensee MDPI