D. A. Tuveson and J. P. Neoptolemos, Understanding metastasis in pancreatic cancer: a call for new clinical approaches, Cell, vol.148, pp.21-24, 2012.

K. P. Koopmans, R. A. Dierckx, P. H. Elsinga, T. P. Links, I. P. Kema et al., Other radiopharmaceuticals for imaging GEP-NET, Somatostatin analogues: from research to clinical practice, 2015.

G. Kramer-marek, J. Gore, and M. Korc, Molecular imaging in pancreatic cancer-a roadmap for therapeutic decisions, Cancer Lett, vol.341, pp.132-140, 2013.

J. D. Cohen, L. Li, Y. Wang, C. Thoburn, B. Afsari et al., Detection and localization of surgically resectable cancers with a multi-analyte blood test, Science, vol.359, pp.926-956, 2018.

E. M. Serrao, M. I. Kettunen, T. B. Rodrigues, P. Dzien, A. J. Wright et al., MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model, Gut, vol.65, pp.465-75, 2016.

M. T. Rosenfeldt, J. O'prey, J. P. Morton, C. Nixon, G. Mackay et al., p53 status determines the role of autophagy in pancreatic tumour development, Nature, vol.504, pp.296-300, 2013.

R. Yeh, L. Dercle, I. Garg, Z. J. Wang, D. M. Hough et al., The role of 18F-FDG PET/CT and PET/MRI in pancreatic ductal adenocarcinoma, Abdom Radiol (NY), vol.43, pp.415-449, 2018.

T. Seufferlein, J. B. Bachet, E. Van-cutsem, P. Rougier, and . Group, Pancreatic adenocarcinoma: ESMOESDO clinical practice guidelines for diagnosis, treatment and follow-up, Ann Oncol, vol.23, issue.7, pp.33-40, 2012.

S. Cascinu, M. Falconi, V. Valentini, S. Jelic, and . Group, Pancreatic cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up, Ann Oncol, vol.21, issue.5, pp.55-63, 2010.

P. Ghaneh, R. Hanson, A. Titman, G. Lancaster, C. Plumpton et al., PET-PANC: multicentre prospective diagnostic accuracy and health economic analysis study of the impact of combined modality 18fluorine-2-fluoro-2-deoxy-d-glucose positron emission tomography with computed tomography scanning in the diagnosis and management of pancreatic cancer, Health Technol Assess, vol.22, pp.1-114, 2018.

K. Takanami, T. Hiraide, T. Kaneta, H. Hayashi, M. Unno et al., FDG PET/CT findings in malignant intraductal papillary mucinous neoplasm of the bile ducts, Clin Nucl Med, vol.35, pp.83-88, 2010.

O. Strobel and M. W. Buchler, Pancreatic cancer: FDG-PET is not useful in early pancreatic cancer diagnosis, Nat Rev Gastroenterol Hepatol, vol.10, pp.203-208, 2013.

J. C. Knight, M. J. Mosley, L. C. Bravo, V. Kersemans, P. D. Allen et al., Zr-anti-gammaH2AX-TAT but not (18)F-FDG allows early monitoring of response to chemotherapy in a mouse model of pancreatic ductal adenocarcinoma, Clin Cancer Res, vol.89, pp.6498-504, 2017.

J. M. Wilson, S. Mukherjee, T. B. Brunner, M. Partridge, and M. A. Hawkins, Correlation of (18)F-Fluorodeoxyglucose positron emission tomography parameters with patterns of disease progression in locally advanced pancreatic cancer after definitive chemoradiotherapy, Clin Oncol ® Coll Radiol), vol.29, pp.370-377, 2017.

D. V. Sahani, P. A. Bonaffini, O. A. Catalano, A. R. Guimaraes, and M. A. Blake, State-of-the-art PET/CT of the pancreas: current role and emerging indications, Radiographics, vol.32, pp.1133-58, 2012.

A. Lamarca, M. C. Asselin, P. Manoharan, M. G. Mcnamara, I. Trigonis et al., 18F-FLT PET imaging of cellular proliferation in pancreatic cancer, Crit Rev Oncol Hematol, vol.99, pp.158-69, 2016.

A. Challapalli, T. Barwick, R. A. Pearson, S. Merchant, F. Mauri et al., 3?-Deoxy-3?-18F-fluorothymidine positron emission tomography as an early predictor of disease progression in

, Med Mol Imaging patients with advanced and metastatic pancreatic cancer, Eur J Nucl Med Mol Imaging, vol.42, pp.831-871, 2015.

A. Quon, S. T. Chang, F. Chin, A. Kamaya, D. W. Dick et al., Initial evaluation of 18F-fluorothymidine (FLT) PET/CT scanning for primary pancreatic cancer, Eur J Nucl Med Mol Imaging, vol.35, pp.527-558, 2008.

H. Wieder, A. J. Beer, J. Siveke, T. Schuster, A. K. Buck et al., )F-fluorothymidine PET for predicting survival in patients with resectable pancreatic cancer, Oncotarget, vol.9, issue.18, pp.10128-10162, 2018.

A. Yuen and B. Diaz, The impact of hypoxia in pancreatic cancer invasion and metastasis, Hypoxia (Auckl), vol.2, pp.91-106, 2014.

S. Pandol, M. Edderkaoui, I. Gukovsky, A. Lugea, and A. Gukovskaya, Desmoplasia of pancreatic ductal adenocarcinoma, Clin Gastroenterol Hepatol, vol.7, pp.44-51, 2009.

J. M. Wilson, E. Fokas, S. J. Dutton, N. Patel, M. A. Hawkins et al., ARCII: a phase II trial of the HIV protease inhibitor nelfinavir in combination with chemoradiation for locally advanced inoperable pancreatic cancer, Radiother Oncol, vol.119, pp.306-317, 2016.

C. Metran-nascente, I. Yeung, D. C. Vines, U. Metser, N. C. Dhani et al., Measurement of tumor hypoxia in patients with advanced pancreatic cancer based on 18F-fluoroazomyin arabinoside uptake, J Nucl Med, vol.57, pp.361-367, 2016.

T. Segard, P. D. Robins, I. F. Yusoff, H. Ee, L. Morandeau et al., Detection of hypoxia with 18F-fluoromisonidazole (18FFMISO) PET/CT in suspected or proven pancreatic cancer, Clin Nucl Med, vol.38, pp.1-6, 2013.

R. Klaassen, R. J. Bennink, G. Van-tienhoven, M. F. Bijlsma, M. G. Besselink et al., Feasibility and repeatability of PET with the hypoxia tracer [(18)F]HX4 in oesophageal and pancreatic cancer, Radiother Oncol, vol.116, pp.94-103, 2015.

Y. Chung, T. Wsawada, Y. Kondo, K. Hirayama, A. Inui et al., Radioimmunodetection with 111In-labelled monoclonal antibody Nd2 in patients with pancreatic cancer, Jpn J Cancer Res, vol.88, pp.427-461, 1997.

C. G. England, R. Hernandez, S. B. Eddine, and W. Cai, Molecular imaging of pancreatic cancer with antibodies, Mol Pharm, vol.13, pp.8-24, 2016.

L. Lindenberg, A. Thomas, S. Adler, E. Mena, K. Kurdziel et al., Safety and biodistribution of 111In-amatuximab in patients with mesothelin expressing cancers using single photon emission computed tomography-computed tomography (SPECT-CT) imaging, Oncotarget, vol.6, pp.4496-504, 2015.

I. Colombo, M. Overchuk, J. Chen, R. M. Reilly, G. Zheng et al., Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology, Methods, vol.130, pp.23-35, 2017.

P. Adumeau, S. K. Sharma, C. Brent, and B. M. Zeglis, Site-specifically labeled immunoconjugates for molecular imaging-part 1: cysteine residues and glycans, Mol Imaging Biol, vol.18, pp.1-17, 2016.

L. M. Wang, M. A. Silva, D. Costa, Z. Bockelmann, R. Soonawalla et al., The prognostic role of desmoplastic stroma in pancreatic ductal adenocarcinoma, Oncotarget, vol.7, pp.4183-94, 2016.

A. Neesse, A. Hahnenkamp, H. Griesmann, M. Buchholz, S. A. Hahn et al., Claudin-4-targeted optical imaging detects pancreatic cancer and its precursor lesions, Gut, vol.62, pp.1034-1077, 2013.

D. Delitto, B. S. Black, H. L. Sorenson, A. E. Knowlton, R. M. Thomas et al., The inflammatory milieu within the pancreatic cancer microenvironment correlates with clinicopathologic parameters, chemoresistance and survival, BMC Cancer, vol.15, p.783, 2015.

W. S. Tummers, A. Farina-sarasqueta, M. C. Boonstra, H. A. Prevoo, C. F. Sier et al., Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma, Oncotarget, vol.8, pp.56816-56844, 2017.

A. L. Mccleary-wheeler, R. Mcwilliams, and M. E. Fernandez-zapico, Aberrant signaling pathways in pancreatic cancer: a two compartment view, Mol Carcinog, vol.51, pp.25-39, 2012.

S. Eser, A. Schnieke, G. Schneider, and D. Saur, Oncogenic KRAS signalling in pancreatic cancer, Br J Cancer, vol.111, pp.817-839, 2014.

M. Sano, D. R. Driscoll, W. E. Dejesus-monge, B. Quattrochi, V. A. Appleman et al., Activation of WNT/beta-catenin signaling enhances pancreatic cancer development and the malignant potential via up-regulation of Cyr61, Neoplasia, vol.18, pp.785-94, 2016.

J. L. Avila and J. L. Kissil, Notch signaling in pancreatic cancer: oncogene or tumor suppressor?, Trends Mol Med, vol.19, pp.320-327, 2013.

M. Gonzalez-gronow, M. A. Selim, J. Papalas, and S. V. Pizzo, GRP78: a multifunctional receptor on the cell surface, Antioxid Redox Signal, vol.11, pp.2299-306, 2009.

D. Dong, C. Stapleton, B. Luo, S. Xiong, W. Ye et al., A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis, Cancer Res, vol.71, pp.2848-57, 2011.

M. Ni, Y. Zhang, and A. S. Lee, Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting, Biochem J, vol.434, pp.181-189, 2011.

S. V. Pizzo, Cell surface GRP78, a new paradigm in signal transduction biology, 2018.

R. Liu, X. Li, W. Gao, Y. Zhou, S. Wey et al., Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis, Clin Cancer Res, vol.19, pp.6802-6813, 2013.

H. Wang, D. Li, S. Liu, R. Liu, H. Yuan et al., Smallanimal PET imaging of pancreatic cancer xenografts using a 64Culabeled monoclonal antibody, MAb159, J Nucl Med, vol.56, pp.908-921, 2015.

T. R. Daniels-wells and M. L. Penichet, Transferrin receptor 1: a target for antibody-mediated cancer therapy, Immunotherapy, vol.8, pp.991-995, 2016.

E. Ryschich, G. Huszty, H. P. Knaebel, M. Hartel, M. W. Buchler et al., Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas, Eur J Cancer, vol.40, pp.1418-1440, 2004.

S. M. Jeong, S. Hwang, and R. H. Seong, Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation, Biochem Biophys Res Commun, vol.471, pp.373-382, 2016.

M. J. Evans, J. P. Holland, S. L. Rice, M. G. Doran, S. M. Cheal et al., Imaging tumor burden in the brain with 89Zr-transferrin, J Nucl Med, vol.54, pp.90-95, 2013.

, Eur J Nucl Med Mol Imaging

J. P. Holland, M. J. Evans, S. L. Rice, J. Wongvipat, C. L. Sawyers et al., Annotating MYC status with 89Zr-transferrin imaging, Nat Med, vol.18, pp.1586-91, 2012.

K. F. Pirollo, J. Dagata, P. Wang, M. Freedman, A. Vladar et al., A tumor-targeted nanodelivery system to improve early MRI detection of cancer, Mol Imaging, vol.5, pp.41-52, 2006.

A. Sugyo, A. B. Tsuji, H. Sudo, K. Nagatsu, M. Koizumi et al., Preclinical evaluation of 89Zr-labeled human antitransferrin receptor monoclonal antibody as a PET probe using a pancreatic cancer mouse model, Nucl Med Commun, vol.36, pp.286-94, 2015.

L. Zhang, X. Ni, and J. D. , Clinical significance of mesothelin in pancreatic cancer, Curr Signal Transduct Ther, vol.11, pp.9-12, 2016.

P. Argani, C. Iacobuzio-donahue, B. Ryu, C. Rosty, M. Goggins et al., Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE), Clin Cancer Res, vol.7, pp.3862-3870, 2001.

R. Hassan, A. Thomas, C. Alewine, D. T. Le, E. M. Jaffee et al., Mesothelin immunotherapy for cancer: ready for prime time?, J Clin Oncol, vol.34, pp.4171-4180, 2016.

L. E. Lamberts, C. W. Menke-van-der-houven-van-oordt, E. J. Ter-weele, F. Bensch, M. M. Smeenk et al., ImmunoPET with antimesothelin antibody in patients with pancreatic and ovarian cancer before anti-mesothelin antibody-drug conjugate treatment, Clin Cancer Res, vol.22, pp.1642-52, 2016.

M. Uhlen, L. Fagerberg, B. M. Hallstrom, C. Lindskog, P. Oksvold et al., Proteomics. Tissue-based map of the human proteome, Science, vol.347, p.1260419, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01479709

C. Lohrmann, E. O'reilly, J. Odonoghue, K. H. Yu, N. Pandit-taskar et al., First-in-human study of (89)Zr-DFOHuMab-5B1 (MVT-2163) PET/CT imaging with and without HuMab-5B1 (MVT-5873) in patients with pancreatic cancer and other CA 19-9 positive malignancies, J Nucl Med, vol.58, p.385, 2017.

F. C. Gaertner, H. Kessler, H. J. Wester, M. Schwaiger, and A. J. Beer, Radiolabelled RGD peptides for imaging and therapy, Eur J Nucl Med Mol Imaging, vol.39, issue.1, pp.126-164, 2012.

C. Hoeltke and A. Faust, Molecular imaging of integrins in oncology, Rep Med Imaging, vol.10, pp.17-30, 2017.

K. Steiger, A. M. Schlitter, W. Weichert, I. Esposito, H. J. Wester et al., Perspective of alphavbeta6-integrin imaging for clinical management of pancreatic carcinoma and its precursor lesions, Mol Imaging, vol.16, p.1536012117709384, 2017.

C. Eberlein, J. Kendrew, K. Mcdaid, A. Alfred, J. S. Kang et al., A human monoclonal antibody 264RAD targeting alphavbeta6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo, Oncogene, vol.32, pp.4406-4422, 2013.

S. Vallath, A. Scarpa, P. Weinreb, S. Violette, C. Steele et al., The integrin ?v?6 is a promising target for the therapy of PDAC: toward phase I trials, Pancreatology, vol.3, p.14, 2014.

K. Steiger, A. Schlitter, W. Weichert, I. Esposito, H. J. Wester et al., Perspective of ?v?6-integrin imaging for clinical management of pancreatic carcinoma and its precursor lesions, Mol Imaging, vol.16, pp.1-3, 2017.

M. Trajkovic-arsic, P. Mohajerani, A. Sarantopoulos, E. Kalideris, K. Steiger et al., Multimodal molecular imaging of integrin alphavbeta3 for in vivo detection of pancreatic cancer, J Nucl Med, vol.55, pp.446-51, 2014.

S. L. Haas, R. Jesnowski, M. Steiner, F. Hummel, J. Ringel et al., Expression of tissue factor in pancreatic adenocarcinoma is associated with activation of coagulation, World J Gastroenterol, vol.12, pp.4843-4852, 2006.

R. Hernandez, C. G. England, Y. Yang, H. F. Valdovinos, B. Liu et al., ImmunoPET imaging of tissue factor expression in pancreatic cancer with (89)Zr-Df-ALT-836, J Control Release, vol.264, pp.160-168, 2017.

H. Hong, Y. Zhang, T. R. Nayak, J. W. Engle, H. C. Wong et al., Immuno-PET of tissue factor in pancreatic cancer, J Nucl Med, vol.53, pp.1748-54, 2012.

H. Takashima, A. B. Tsuji, T. Saga, M. Yasunaga, Y. Koga et al., Molecular imaging using an anti-human tissue factor monoclonal antibody in an orthotopic glioma xenograft model, Sci Rep, vol.7, p.12341, 2017.

R. Carraway and S. E. Leeman, The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami, J Biol Chem, vol.248, pp.6854-61, 1973.

M. Korner, B. Waser, O. Strobel, M. Buchler, and J. C. Reubi, Neurotensin receptors in pancreatic ductal carcinomas, EJNMMI Res, vol.5, p.17, 2015.

S. Maschauer, J. Einsiedel, H. Hubner, P. Gmeiner, and O. Prante, 18)Fand (68)Ga-labeled neurotensin peptides for PET imaging of neurotensin receptor 1, J Med Chem, vol.59, pp.6480-92, 2016.

C. Lang, S. Maschauer, H. Hubner, P. Gmeiner, and O. Prante, Synthesis and evaluation of a (18)F-labeled diarylpyrazole glycoconjugate for the imaging of NTS1-positive tumors, J Med Chem, vol.56, pp.9361-9366, 2013.

S. Sulpizio, N. Franceschini, A. Piattelli, D. Sebastiano, P. Innocenti et al., Cathepsins and pancreatic cancer: the 2012 update, Pancreatology, vol.12, pp.395-401, 2012.

Z. Cruz-monserrate, W. R. Abd-elgaliel, T. Grote, D. Deng, J. B. Arumugam et al., Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models, Gut, vol.61, pp.1315-1337, 2012.

L. Kramer, M. Renko, J. Zavrsnik, D. Turk, M. A. Seeger et al., Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin, Theranostics, vol.7, pp.2806-2827, 2017.

A. Gopinathan, G. M. Denicola, K. K. Frese, N. Cook, F. A. Karreth et al., Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice, Gut, vol.61, pp.877-84, 2012.

G. Zhou, X. Liu, X. Wang, J. D. Chen, Y. Li et al., Combination of preoperative CEA and CA19-9 improves prediction outcomes in patients with resectable pancreatic adenocarcinoma: results from a large follow-up cohort, Onco Targets Ther, vol.10, pp.1199-206, 2017.

M. C. Boonstra, B. Tolner, B. E. Schaafsma, L. S. Boogerd, H. A. Prevoo et al., Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors, Int J Cancer, vol.137, pp.1910-1930, 2015.

L. Boogerd, F. A. Vuijk, C. Hoogstins, H. Handgraaf, M. Van-der-valk et al., Correlation between preoperative serum carcinoembryonic antigen levels and expression on pancreatic and rectal cancer tissue, Biomark Cancer, vol.9, 2017.

R. Schoffelen, O. C. Boerman, D. M. Goldenberg, R. M. Sharkey, C. M. Van-herpen et al., Development of an imagingguided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results, Br J Cancer, vol.109, pp.934-976, 2013.

, Eur J Nucl Med Mol Imaging

E. A. Rossi, D. M. Goldenberg, T. M. Cardillo, W. J. Mcbride, R. M. Sharkey et al., Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting, Proc Natl Acad Sci, vol.103, pp.6841-6847, 2006.

D. M. Goldenberg, E. A. Rossi, R. M. Sharkey, W. J. Mcbride, and C. H. Chang, Multifunctional antibodies by the dock-and-lock method for improved cancer imaging and therapy by pretargeting, J Nucl Med, vol.49, pp.158-63, 2008.

R. Schoffelen, W. T. Van-der-graaf, G. Franssen, R. M. Sharkey, D. M. Goldenberg et al., Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice, J Nucl Med, vol.51, pp.1780-1787, 2010.

J. L. Houghton, B. M. Zeglis, D. Abdel-atti, R. Aggeler, R. Sawada et al., Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/ NIRF imaging of pancreatic cancer, Proc Natl Acad Sci U S A, vol.112, pp.15850-15855, 2015.

J. L. Houghton, D. Abdel-atti, W. W. Scholz, and J. S. Lewis, Preloading with unlabeled CA19.9 targeted human monoclonal antibody leads to improved PET imaging with (89)Zr-5B1, Mol Pharm, vol.14, pp.908-923, 2017.

C. Feig, A. Gopinathan, A. Neesse, D. S. Chan, N. Cook et al., The pancreas cancer microenvironment, Clin Cancer Res, vol.18, pp.4266-76, 2012.

R. Laing, M. Walter, D. Campbell, H. Herschman, N. Satyamurthy et al., Noninvasive prediction of tumor responses to gemcitabine using positron emission tomography, Proc Natl Acad Sci, vol.106, issue.8, pp.2847-2852, 2009.

J. Russell, N. Pillarsetty, R. M. Kramer, P. B. Romesser, P. Desai et al., In vitro and in vivo comparison of gemcitabine and the gemcitabine analog 1-(2?-deoxy-2?fluoroarabinofuranosyl) cytosine (FAC) in human orthotopic and genetically modified mouse pancreatic cancer models, Mol Imaging Biol, vol.19, pp.885-92, 2017.

S. Brewer, E. Nair-gill, B. Wei, L. Chen, X. Li et al., Epithelial uptake of [18F]1-(2?-deoxy-2?-arabinofuranosyl) cytosine indicates intestinal inflammation in mice, Gastroenterology, vol.138, pp.1266-75, 2010.

O. Connor, J. P. Aboagye, E. O. Adams, J. E. Aerts, H. J. Barrington et al., Imaging biomarker roadmap for cancer studies, Nat Rev Clin Oncol, vol.14, pp.169-86, 2017.

C. B. Westphalen and K. P. Olive, Genetically engineered mouse models of pancreatic cancer, Cancer J, vol.18, pp.502-512, 2012.

F. A. Gallagher, H. Sladen, M. I. Kettunen, E. M. Serrao, T. B. Rodrigues et al., Carbonic anhydrase activity monitored in vivo by hyperpolarized 13C-magnetic resonance spectroscopy demonstrates its importance for pH regulation in tumors, Cancer Res, vol.75, pp.4109-4127, 2015.

V. Fendrich, R. Schneider, A. Maitra, I. D. Jacobsen, T. Opfermann et al., Detection of precursor lesions of pancreatic adenocarcinoma in PET-CT in a genetically engineered mouse model of pancreatic cancer, Neoplasia, vol.13, pp.180-186, 2011.

M. Hidalgo, F. Amant, A. V. Biankin, E. Budinska, A. T. Byrne et al., Patient-derived xenograft models: an emerging platform for translational cancer research, Cancer Discov, vol.4, pp.998-1013, 2014.

A. Adamska, A. Domenichini, and M. Falasca, Pancreatic ductal adenocarcinoma: current and evolving therapies, Int J Mol Sci, vol.18, p.1338, 2017.