J. Ferlay, I. Soerjomataram, and R. Dikshit, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int J Cancer, vol.136, pp.359-386, 2015.

R. L. Siegel, K. D. Miller, and A. Jemal, Cancer statistics, CA Cancer J Clin, vol.66, pp.7-30, 2016.

K. Jaaback, N. Johnson, and T. A. Lawrie, Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer, Cochrane Database Syst Rev, vol.005340, 2016.

P. H. Sugarbaker, W. J. Cunliffe, and J. Belliveau, Rationale for integrating early postoperative intraperitoneal chemotherapy into the surgical treatment of gastrointestinal cancer, Semin Oncol, vol.16, pp.83-97, 1989.

Y. R. Huo, A. Richards, W. Liauw, and D. L. Morris, Hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery (CRS) in ovarian cancer: a systematic review and meta-analysis, Eur J Surg Oncol, vol.41, pp.1578-1589, 2015.

M. D. Goodman, S. Mcpartland, D. Detelich, and M. W. Saif, Chemotherapy for intraperitoneal use: a review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy, J Gastrointest Oncol, vol.7, pp.45-57, 2016.

C. Müller, K. Zhernosekov, and U. Koster, A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for a-and b-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative, J Nucl Med, vol.53, pp.1951-1959, 2012.

X. Y. Liu, X. Su, C. J. Xie, L. Li, J. Y. Yan et al., Pharmacodynamic study of 131 Ilabeled CA215 antibody on an animal model of estrogen-resistant OC-3-VGH ovarian cancer, Exp Ther Med, vol.10, pp.572-578, 2015.

J. Grünberg, D. Lindenblatt, and H. Dorrer, Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium177 in an ovarian cancer model, Eur J Nucl Med Mol Imaging, vol.41, pp.1907-1915, 2014.

E. Fischer, J. Grunberg, and S. Cohrs, L1-CAM-targeted antibody therapy and 177 Lu-radioimmunotherapy of disseminated ovarian cancer, Int J Cancer, vol.130, pp.2715-2721, 2012.

C. Seidl, C. Zockler, R. Beck, L. Quintanilla-martinez, and F. Bruchertseifer, Senekowitsch-Schmidtke R. 177 Lu-immunotherapy of experimental peritoneal carcinomatosis shows comparable effectiveness to 213 Bi-immunotherapy, but causes toxicity not observed with 213 Bi, Eur J Nucl Med Mol Imaging, vol.38, pp.312-322, 2011.

D. E. Milenic, K. J. Wong, and K. E. Baidoo, Targeting HER2: a report on the in vitro and in vivo pre-clinical data supporting trastuzumab as a radioimmunoconjugate for clinical trials, MAbs, vol.2, pp.550-564, 2010.

, White blood cell count, hemoglobin level, and weight were monitored in healthy mice at various times from days 0 to 36 after IP-RIT and BIP-RIT with 177 Lu16F12 or 213 Bi-16F12 and expressed as ratio relative to treatment with NaCl control. (B) Wholebody PET/CT images of mice bearing subcutaneous AN3CA cell tumor xenografts in right flank at 24, 48, 72, FIGURE 7. (A) Hematologic toxicity, pp.89-105

A. Zacchetti, A. Coliva, and E. Luison, 177 Lu-labeled MOv18 as compared to 131 Ior 90 Y-labeled MOv18 has the better therapeutic effect in eradication of alpha folate receptor-expressing tumor xenografts, Nucl Med Biol, vol.36, pp.759-770, 2009.

A. Syme, S. Mcquarrie, and B. G. Fallone, Beta dose-rate distributions in microscopic spherical tumors for intraperitoneal radioimmunotherapy, Int J Radiat Oncol Biol Phys, vol.56, pp.1495-1506, 2003.

P. E. Borchardt, S. M. Quadri, R. S. Freedman, and H. M. Vriesendorp, Indium-111-and yttrium-90-labeled human monoclonal immunoglobulin M targeting of human ovarian cancer in mice, J Nucl Med, vol.39, pp.476-484, 1998.

P. E. Borchardt, S. M. Quadri, R. S. Freedman, and H. M. Vriesendorp, Intraperitoneal radioimmunotherapy with human monoclonal IGM in nude mice with peritoneal carcinomatosis, Cancer Biother Radiopharm, vol.15, pp.53-64, 2000.

M. L. Janssen, W. Pels, and L. F. Massuger, Intraperitoneal radioimmunotherapy in an ovarian carcinoma mouse model: effect of the radionuclide, Int J Gynecol Cancer, vol.13, pp.607-613, 2003.

J. Elgqvist, H. Andersson, and T. Back, Alpha-radioimmunotherapy of intraperitoneally growing OVCAR-3 tumors of variable dimensions: outcome related to measured tumor size and mean absorbed dose, J Nucl Med, vol.47, pp.1342-1350, 2006.

A. M. Gustafsson, T. Back, and J. Elgqvist, Comparison of therapeutic efficacy and biodistribution of 213 Bi-and 211 At-labeled monoclonal antibody MX35 in an ovarian cancer model, Nucl Med Biol, vol.39, pp.15-22, 2012.

H. Andersson, J. Elgqvist, and G. Horvath, Astatine-211-labeled antibodies for treatment of disseminated ovarian cancer: an overview of results in an ovarian tumor model, Clin Cancer Res, vol.9, pp.3914-3921, 2003.

S. Palm, T. A. Bäck, S. Lindegren, R. Hultborn, L. Jacobsson et al., Model of intraperitoneal targeted a-particle therapy shows that posttherapy cold-antibody boost enhances microtumor radiation dose and treatable tumor sizes, J Nucl Med, vol.59, pp.646-651, 2018.

A. Gustafsson-lutz, T. Back, and E. Aneheim, Therapeutic efficacy of alpharadioimmunotherapy with different activity levels of the 213 Bi-labeled monoclonal antibody MX35 in an ovarian cancer model, EJNMMI Res, vol.7, p.38, 2017.

T. Bäck, N. Chouin, and S. Lindegren, Cure of human ovarian carcinoma solid xenografts by fractionated alpha-radioimmunotherapy with 211 At-MX35-F(ab9) 2 : influence of absorbed tumor dose and effect on long-term survival, J Nucl Med, vol.58, pp.598-604, 2017.

V. Boudousq, L. Bobyk, and M. Busson, Comparison between internalizing antiHER2 mAbs and non-internalizing anti-CEA mAbs in alpha-radioimmunotherapy of small volume peritoneal carcinomatosis using 212 Pb, PLoS One, vol.8, p.69613, 2013.

V. Boudousq, S. Ricaud, and V. Garambois, Brief intraperitoneal radioimmunotherapy of small peritoneal carcinomatosis using high activities of noninternalizing 125 I-labeled monoclonal antibodies, J Nucl Med, vol.51, pp.1748-1755, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00531603

L. Santoro, S. Boutaleb, and V. Garambois, Noninternalizing monoclonal antibodies are suitable candidates for 125 I radioimmunotherapy of small-volume peritoneal carcinomatosis, J Nucl Med, vol.50, pp.2033-2041, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00442929

J. Baranowska-kortylewicz, Intraperitoneal radioimmunotherapy: Auger electron emitters for solid tumors, Immunotherapy, vol.3, pp.491-494, 2011.

R. H. Verheijen, L. F. Massuger, and B. B. Benigno, Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission, J Clin Oncol, vol.24, pp.571-578, 2006.

J. Teixeira, S. Maheswaran, and P. K. Donahoe, Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications, Endocr Rev, vol.22, pp.657-674, 2001.

S. Imbeaud, E. Faure, and I. Lamarre, Insensitivity to anti-Müllerian hormone due to a mutation in the human anti-Müllerian hormone receptor, Nat Genet, vol.11, pp.382-388, 1995.

S. P. Jamin, N. A. Arango, Y. Mishina, M. C. Hanks, and R. R. Behringer, Genetic studies of the AMH/MIS signaling pathway for Müllerian duct regression, Mol Cell Endocrinol, vol.211, pp.15-19, 2003.

R. Rey, J. C. Sabourin, and M. Venara, Anti-Müllerian hormone is a specific marker of Sertoli-and granulosa-cell origin in gonadal tumors, Hum Pathol, vol.31, pp.1202-1208, 2000.

J. N. Bakkum-gamez, G. Aletti, and K. A. Lewis, Müllerian inhibiting substance type II receptor (MISIIR): a novel, tissue-specific target expressed by gynecologic cancers, Gynecol Oncol, vol.108, pp.141-148, 2008.

J. Y. Song, K. Y. Chen, and S. Y. Kim, The expression of Müllerian inhibiting substance/anti-Müllerian hormone type II receptor protein and mRNA in benign, borderline and malignant ovarian neoplasia, Int J Oncol, vol.34, pp.1583-1591, 2009.

D. Pépin, A. Sosulski, and L. Zhang, AAV9 delivering a modified human Müllerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer, Proc Natl Acad Sci USA, vol.112, pp.4418-4427, 2015.

I. Salhi, S. Cambon-roques, and I. Lamarre, The anti-Müllerian hormone type II receptor: insights into the binding domains recognized by a monoclonal antibody and the natural ligand, Biochem J, vol.379, pp.785-793, 2004.

E. Dadachova, L. L. Chappell, and M. W. Brechbiel, Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates, Nucl Med Biol, vol.26, pp.977-982, 1999.

M. J. Vosjan, L. R. Perk, and G. W. Visser, Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine, Nat Protoc, vol.5, pp.739-743, 2010.

T. Lindmo, E. Boven, F. Cuttitta, J. Fedorko, and P. A. Bunn, Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess, J Immunol Methods, vol.72, pp.77-89, 1984.

P. Kletting, T. Kull, S. N. Reske, and G. Glatting, Comparing time activity curves using the Akaike information criterion, Phys Med Biol, vol.54, pp.501-507, 2009.

R. Loevinger, T. Budinger, E. Watson, and . Mird, Society of Nuclear Medicine and Molecular Imaging, 1991.

T. M. Behr, G. Sgouros, and M. G. Stabin, Studies on the red marrow dosimetry in radioimmunotherapy: an experimental investigation of factors influencing the radiation-induced myelotoxicity in therapy with beta-, Auger/conversion electron-, or alpha-emitters, Clin Cancer Res, vol.5, pp.3031-3043, 1999.

K. F. Eckerman and E. Akira, Society of Nuclear Medicine and Molecular Imaging, 2008.

E. Larsson, M. Ljungberg, S. E. Strand, and B. A. Jonsson, Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for preclinical dosimetry studies, Acta Oncol, vol.50, pp.973-980, 2011.

D. Sarrut, M. Bardies, and N. Boussion, A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Med Phys, vol.41, p.64301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015819

J. Dahle, N. Abbas, O. S. Bruland, and R. H. Larsen, Toxicity and relative biological effectiveness of alpha emitting radioimmunoconjugates, Curr Radiopharm, vol.4, pp.321-328, 2011.

F. Graf, J. Fahrer, and S. Maus, DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy, PLoS One, vol.9, p.88239, 2014.