T. C. Sudhof, Molecular Neuroscience in the 21(st) Century: A Personal Perspective, Neuron, vol.96, pp.536-541, 2017.

J. Fantini, N. Garmy, R. Mahfoud, and N. Yahi, Lipid rafts: Structure, function and role in HIV, Alzheimer's and prion diseases, Expert Rev. Mol. Med, vol.4, pp.1-22, 2002.

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, pp.569-572, 1997.
DOI : 10.1038/42408

L. J. Pike, Rafts defined: A report on the Keystone Symposium on Lipid Rafts and Cell Function, J. Lipid Res, vol.47, pp.1597-1598, 2006.

D. M. Owen, D. J. Williamson, A. Magenau, and K. Gaus, Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution, Nat. Commun, vol.3, 1256.

M. Hao, S. Mukherjee, and F. R. Maxfield, Cholesterol depletion induces large scale domain segregation in living cell membranes, Proc. Natl. Acad. Sci, vol.98, pp.13072-13077, 2001.

J. F. Frisz, K. Lou, H. A. Klitzing, W. P. Hanafin, V. Lizunov et al., Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts, Proc. Natl. Acad. Sci, vol.110, 2013.

J. F. Frisz, H. A. Klitzing, K. Lou, I. D. Hutcheon, P. K. Weber et al., Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol, J. Boil. Chem, vol.288, pp.16855-16861, 2013.

J. Fantini and N. Yahi, Brain Lipids in Synaptic Function and Neurological Disease. Clues to Innovative Therapeutic Strategies for Brain Disorders, 2015.

M. V. Borroni, A. S. Valles, and F. J. Barrantes, The lipid habitats of neurotransmitter receptors in brain, Biochim. Biophys. Acta, vol.1858, pp.2662-2670, 2016.

J. Fantini and F. J. Barrantes, Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function, Biochim. Biophys. Acta, vol.1788, pp.2345-2361, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00481491

J. A. Allen, R. A. Halverson-tamboli, and M. M. Rasenick, Lipid raft microdomains and neurotransmitter signaling, Nat. Rev. Neurosci, vol.8, pp.128-140, 2007.
DOI : 10.1038/nrn2059

W. A. Devane, L. Hanus, A. Breuer, R. G. Pertwee, L. A. Stevenson et al., Isolation and structure of a brain constituent that binds to the cannabinoid receptor, Science, vol.258, pp.1946-1949, 1992.

E. Bieberich, It's a lipid's world: Bioactive lipid metabolism and signaling in neural stem cell differentiation, Neurochem. Res, vol.37, pp.1208-1229, 2012.
DOI : 10.1007/s11064-011-0698-5

URL : http://europepmc.org/articles/pmc3343224?pdf=render

Y. Lu and H. D. Anderson, Cannabinoid signaling in health and disease. Can, J. Physiol. Pharmacol, vol.95, pp.311-327, 2017.
DOI : 10.1139/cjpp-2016-0346

URL : https://tspace.library.utoronto.ca/bitstream/1807/75838/1/cjpp-2016-0346.pdf

Y. Sarne and R. Mechoulam, Cannabinoids: Between neuroprotection and neurotoxicity, Current drug targets. CNS Neurol. Disord, vol.4, pp.677-684, 2005.
DOI : 10.2174/156800705774933005

Y. Okamoto, J. Wang, J. Morishita, and N. Ueda, Biosynthetic pathways of the endocannabinoid anandamide, Chem. Biodivers, vol.4, pp.1842-1857, 2007.
DOI : 10.1002/cbdv.200790155

E. Fride, Endocannabinoids in the central nervous system-An overview, Prostaglandins Leukot. Essent. Fatty Acids, vol.66, pp.221-233, 2002.

A. R. Brash, Arachidonic acid as a bioactive molecule, J. Clin. Investig, vol.107, pp.1339-1345, 2001.
DOI : 10.1172/jci13210

URL : http://www.jci.org/articles/view/13210/files/pdf

M. H. Glickman and J. P. Klinman, Nature of rate-limiting steps in the soybean lipoxygenase-1 reaction, Biochemistry, vol.34, pp.14077-14092, 1995.

G. S. Bild, C. S. Ramadoss, S. Lim, and B. Axelrod, Double dioxygenation of arachidonic acid by soybean lipoxygenase-1, Biochem. Biophys. Res. Commun, vol.74, pp.949-954, 1977.
DOI : 10.1016/0006-291x(77)91610-2

P. H. Reggio and H. Traore, Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase, Chem. Phys. Lipids, vol.108, pp.15-35, 2000.
DOI : 10.1016/s0009-3084(00)00185-7

D. Scala, C. Mazzarino, M. Yahi, N. Varini, K. Garmy et al., Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data, vol.14, pp.163-167, 2017.

D. Scala, C. Fantini, and J. , Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins, Methods Mol. Boil, vol.1583, pp.7-19, 2017.

B. E. Alger, Endocannabinoids: Getting the message across, Proc. Natl. Acad. Sci, vol.101, pp.8512-8513, 2004.
DOI : 10.1073/pnas.0402935101

URL : http://www.pnas.org/content/101/23/8512.full.pdf

A. C. Kreitzer and W. G. Regehr, Retrograde signaling by endocannabinoids, Curr. Opin. Neurobiol, vol.12, pp.324-330, 2002.
DOI : 10.1016/s0959-4388(02)00328-8

G. Thakur, M. Micic, and R. M. Leblanc, Surface chemistry of Alzheimer's disease: A Langmuir monolayer approach, Colloids Surf. B Biointerfaces, vol.74, pp.436-456, 2009.
DOI : 10.1016/j.colsurfb.2009.07.043

D. Scala, C. Yahi, N. Fantini, J. Chahinian, and H. , Disruption of anandamide aggregates studied by surface pressure measurements. Unpublished data, 2017.

P. I. Castagnet, M. Y. Golovko, G. C. Barcelo-coblijn, R. L. Nussbaum, and E. J. Murphy, Fatty acid incorporation is decreased in astrocytes cultured from ?-synuclein gene-ablated mice, J. Neurochem, vol.94, pp.839-849, 2005.
DOI : 10.1111/j.1471-4159.2005.03247.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2005.03247.x/pdf

M. Chivet, F. Hemming, K. Pernet-gallay, S. Fraboulet, and R. Sadoul, Emerging role of neuronal exosomes in the central nervous system, Front. Physiol, vol.3, p.145, 2012.
DOI : 10.3389/fphys.2012.00145

URL : https://hal.archives-ouvertes.fr/inserm-00733770

M. Ricci, R. Oliva, P. Vecchio, M. Paolantoni, A. Morresi et al., DMSO-induced perturbation of thermotropic properties of cholesterol-containing DPPC liposomes, Biochim. Biophys. Acta, vol.1858, pp.3024-3031, 2016.
DOI : 10.1016/j.bbamem.2016.09.012

A. A. Gurtovenko and J. Anwar, Modulating the structure and properties of cell membranes: The molecular mechanism of action of dimethyl sulfoxide, J. Phys. Chem. B, vol.111, pp.10453-10460, 2007.

L. Gustavsson, Brain lipid changes after ethanol exposure, Upsala J. Med. Sci. Suppl, vol.48, pp.245-266, 1990.

D. Pasquale, E. Chahinian, H. Sanchez, P. Fantini, and J. , The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent, PLoS ONE, vol.4, p.4989, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00481492

A. C. Howlett, M. E. Abood, and . Pharmacology, Adv. Pharmacol, vol.80, pp.169-206, 2017.

J. Barnett-norris, D. P. Hurst, D. L. Lynch, F. Guarnieri, A. Makriyannis et al., Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor, J. Med. Chem, vol.45, pp.3649-3659, 2002.

X. Tian, J. Guo, F. Yao, D. P. Yang, and A. Makriyannis, The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer, J. Boil. Chem, vol.280, pp.29788-29795, 2005.

A. C. Howlett, P. H. Reggio, S. R. Childers, R. E. Hampson, N. M. Ulloa et al., Endocannabinoid tone versus constitutive activity of cannabinoid receptors, Br. J. Pharmacol, vol.163, pp.1329-1343, 2011.

C. J. Fowler, Transport of endocannabinoids across the plasma membrane and within the cell, FEBS J, vol.280, pp.1895-1904, 2013.

D. Fegley, S. Kathuria, R. Mercier, C. Li, A. Goutopoulos et al., Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172, Proc. Natl. Acad. Sci, vol.101, pp.8756-8761, 2004.

M. Maccarrone, Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years, Front. Mol. Neurosci, vol.10, 2017.

S. T. Glaser, M. Kaczocha, and D. G. Deutsch, Anandamide transport: A critical review, Life Sci, vol.77, pp.1584-1604, 2005.

A. Hermann, M. Kaczocha, and D. G. Deutsch, 2-Arachidonoylglycerol (2-AG) membrane transport: History and outlook, AAPS J, vol.8, pp.409-412, 2006.

M. Aureli, S. Grassi, S. Prioni, S. Sonnino, and A. Prinetti, Lipid membrane domains in the brain, Biochim. Biophys. Acta, vol.1851, pp.1006-1016, 2015.

D. Marquardt, N. Kucerka, S. R. Wassall, T. A. Harroun, and J. Katsaras, Cholesterol's location in lipid bilayers, Chem. Phys. Lipids, vol.199, pp.17-25, 2016.

M. L. Schmidt and J. H. Davis, Liquid Disordered-Liquid Ordered Phase Coexistence in Lipid/Cholesterol Mixtures: A Deuterium 2D NMR Exchange Study, vol.33, pp.1881-1890, 2017.

G. Thakur, C. Pao, M. Micic, S. Johnson, and R. M. Leblanc, Surface chemistry of lipid raft and amyloid A? (1-40) Langmuir monolayer, Colloids Surf. B Biointerfaces, vol.87, pp.369-377, 2011.

D. Hammache, G. Pieroni, M. Maresca, S. Ivaldi, N. Yahi et al., Reconstitution of sphingolipid-cholesterol plasma membrane microdomains for studies of virus-glycolipid interactions, Methods Enzymol, vol.312, pp.495-506, 2000.

D. Scala, C. Chahinian, H. Yahi, N. Garmy, N. Fantini et al., Interaction of Alzheimer's ?-amyloid peptides with cholesterol: Mechanistic insights into amyloid pore formation, Biochemistry, vol.53, pp.4489-4502, 2014.

D. Scala, C. Mazzarino, M. Yahi, N. Varini, K. Garmy et al., Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells, Chem. Phys. Lipids, vol.205, pp.11-17, 2017.

M. Lonnfors, O. Langvik, A. Bjorkbom, and J. P. Slotte, Cholesteryl phosphocholine-A study on its interactions with ceramides and other membrane lipids, Langmuir, vol.29, pp.2319-2329, 2013.

R. Metcalf and S. A. Pandit, Mixing properties of sphingomyelin ceramide bilayers: A simulation study, J. Phys. Chem. B, vol.116, pp.4500-4509, 2012.

M. Bari, N. Battista, F. Fezza, A. Finazzi-agro, and M. Maccarrone, Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis, J. Boil. Chem, vol.280, pp.12212-12220, 2005.

D. Sarnataro, C. Grimaldi, S. Pisanti, P. Gazzerro, C. Laezza et al., Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cancer cells, FEBS Lett, vol.579, pp.6343-6349, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00167016

R. Rukmini, S. S. Rawat, S. C. Biswas, and A. Chattopadhyay, Cholesterol organization in membranes at low concentrations: Effects of curvature stress and membrane thickness, Biophys. J, vol.81, pp.2122-2134, 2001.
DOI : 10.1016/s0006-3495(01)75860-2

URL : https://doi.org/10.1016/s0006-3495(01)75860-2

S. Mukherjee and A. Chattopadhyay, Membrane organization at low cholesterol concentrations: A study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol, Biochemistry, vol.35, pp.1311-1322, 1996.
DOI : 10.1021/bi951953q

URL : http://www.ccmb.res.in/staff/amit/Group%20Publications/1996%20Biochemistry.pdf

W. F. Bennett and D. P. Tieleman, Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes, J. Lipid Res, vol.53, pp.421-429, 2012.

J. Fantini, C. Di-scala, L. S. Evans, P. T. Williamson, and F. J. Barrantes, A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes, Sci. Rep, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01772916

M. Kaczocha, S. T. Glaser, and D. G. Deutsch, Identification of intracellular carriers for the endocannabinoid anandamide, Proc. Natl. Acad. Sci, vol.106, pp.6375-6380, 2009.
DOI : 10.1073/pnas.0901515106

URL : http://www.pnas.org/content/106/15/6375.full.pdf

F. Fezza, C. De-simone, D. Amadio, and M. Maccarrone, Fatty acid amide hydrolase: A gate-keeper of the endocannabinoid system, Sub-Cell. Biochem, vol.49, pp.101-132, 2008.

B. F. Cravatt, D. K. Giang, S. P. Mayfield, D. L. Boger, R. A. Lerner et al., Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides, Nature, vol.384, pp.83-87, 1996.
DOI : 10.1038/384083a0

P. H. Reggio, Endocannabinoid binding to the cannabinoid receptors: What is known and what remains unknown, Curr. Med. Chem, vol.17, pp.1468-1486, 2010.
DOI : 10.2174/092986710790980005

URL : http://europepmc.org/articles/pmc4120766?pdf=render

R. P. Picone, A. D. Khanolkar, W. Xu, L. A. Ayotte, G. A. Thakur et al., ?)-7-Isothiocyanato-11-hydroxy-1 ,1-dimethylheptylhexahydrocannabinol (AM841), a high-affinity electrophilic ligand, interacts covalently with a cysteine in helix six and activates the CB1 cannabinoid receptor, Mol. Pharmacol, vol.68, pp.1623-1635, 2005.

G. Gimpl, Interaction of G protein coupled receptors and cholesterol, Chem. Phys. Lipids, vol.199, pp.61-73, 2016.

Y. D. Paila, S. Tiwari, and A. Chattopadhyay, Are specific nonannular cholesterol binding sites present in G-protein coupled receptors?, Biochim. Biophys. Acta, vol.1788, pp.295-302, 2009.
DOI : 10.1016/j.bbamem.2008.11.020

URL : https://doi.org/10.1016/j.bbamem.2008.11.020

G. Gimpl, K. Burger, and F. Fahrenholz, Cholesterol as modulator of receptor function, Biochemistry, vol.36, pp.10959-10974, 1997.
DOI : 10.1021/bi963138w

Y. D. Paila and A. Chattopadhyay, Membrane cholesterol in the function and organization of G-protein coupled receptors, Sub-Cell. Biochem, vol.51, pp.439-466, 2010.

P. Ma, D. Weichert, L. A. Aleksandrov, T. J. Jensen, J. R. Riordan et al., The cubicon method for concentrating membrane proteins in the cubic mesophase, Nat. Protoc, vol.12, pp.1745-1762, 2017.
DOI : 10.1038/nprot.2017.057

R. Grisshammer, New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors, Protein Sci, vol.26, pp.1493-1504, 2017.

M. Caffrey, Membrane protein crystallization, J. Struct. Boil, vol.142, pp.108-132, 2003.

X. Yin, H. Xu, M. Hanson, and W. Liu, GPCR crystallization using lipidic cubic phase technique, Curr. Pharm. Biotechnol, vol.15, pp.971-979, 2014.
DOI : 10.2174/1389201015666140922110325

M. A. Hanson, V. Cherezov, M. T. Griffith, C. B. Roth, V. P. Jaakola et al., A specific cholesterol binding site is established by the 2.8 Å structure of the human ? 2-adrenergic receptor, Structure, vol.16, pp.897-905, 2008.
DOI : 10.1016/j.str.2008.05.001

URL : https://doi.org/10.1016/j.str.2008.05.001

D. Scala, C. Baier, C. J. Evans, L. S. Williamson, P. T. Fantini et al., Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors, Curr. Top. Membr, vol.80, pp.3-23, 2017.

N. Jamin, J. M. Neumann, M. A. Ostuni, T. K. Vu, Z. X. Yao et al., Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor, Mol. Endocrinol, vol.19, pp.588-594, 2005.

C. J. Baier, J. Fantini, and F. J. Barrantes, Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor, Sci. Rep, 2011.

J. Fantini, C. Di-scala, C. J. Baier, and F. J. Barrantes, Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains, Chem. Phys. Lipids, vol.199, pp.52-60, 2016.

T. Hua, K. Vemuri, S. P. Nikas, R. B. Laprairie, Y. Wu et al., Crystal structures of agonist-bound human cannabinoid receptor CB1, Nature, vol.547, pp.468-471, 2017.

D. L. Gater, O. Saurel, I. Iordanov, W. Liu, V. Cherezov et al., Two classes of cholesterol binding sites for the ? 2 AR revealed by thermostability and NMR, Biophys. J, vol.107, pp.2305-2312, 2014.

M. Manna, M. Niemela, J. Tynkkynen, and M. Javanainen, Mechanism of allosteric regulation of ? 2-adrenergic receptor by cholesterol, vol.5, 2016.

T. Hua, K. Vemuri, M. Pu, L. Qu, G. W. Han et al., Crystal Structure of the Human Cannabinoid Receptor CB1. Cell, vol.167, pp.750-762, 2016.

A. Sabatucci, D. Tortolani, and E. Dainese, In silico mapping of allosteric ligand binding sites in type-1 cannabinoid receptor, Biotechnol. Appl. Biochem, vol.65, pp.21-28, 2018.

J. H. Park, P. Scheerer, K. P. Hofmann, H. W. Choe, and O. P. Ernst, Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature, vol.454, pp.183-187, 2008.

P. W. Hildebrand, P. Scheerer, J. H. Park, H. W. Choe, R. Piechnick et al., A ligand channel through the G protein coupled receptor opsin, PLoS ONE, vol.4, 2009.
DOI : 10.1371/journal.pone.0004382

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004382&type=printable

R. W. Ledeen and G. Wu, Nuclear sphingolipids: Metabolism and signaling, J. Lipid Res, vol.49, pp.1176-1186, 2008.

D. Parolaro, P. Massi, T. Rubino, and E. Monti, Endocannabinoids in the immune system and cancer, Prostaglandins Leukot. Essent. Fatty Acids, vol.66, pp.319-332, 2002.

K. K. Biswas, K. P. Sarker, K. Abeyama, K. Kawahara, S. Iino et al., Membrane cholesterol but not putative receptors mediates anandamide-induced hepatocyte apoptosis, Hepatology, vol.38, pp.1167-1177, 2003.
DOI : 10.1053/jhep.2003.50459

E. Dainese, S. Oddi, M. Bari, and M. Maccarrone, Modulation of the endocannabinoid system by lipid rafts, Curr. Med. Chem, vol.14, pp.2702-2715, 2007.

Q. Yang, H. Y. Liu, Y. W. Zhang, W. J. Wu, and W. X. Tang, Anandamide induces cell death through lipid rafts in hepatic stellate cells, J. Gastroenterol. Hepatol, vol.25, pp.991-1001, 2010.
DOI : 10.1111/j.1440-1746.2009.06122.x

M. J. Mcfarland and E. L. Barker, Lipid rafts: A nexus for endocannabinoid signaling?, Life Sci, vol.77, pp.1640-1650, 2005.

K. P. Sarker and I. Maruyama, Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: Possible involvement of lipid rafts, Cell. Mol. Life Sci, vol.60, pp.1200-1208, 2003.

M. Kaczocha, Q. Lin, L. D. Nelson, M. K. Mckinney, B. F. Cravatt et al., Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion, ACS Chem. Neurosci, vol.3, pp.364-368, 2012.

E. Dainese, G. De-fabritiis, A. Sabatucci, S. Oddi, C. B. Angelucci et al., Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH, Biochem. J, vol.457, pp.463-472, 2014.

B. Sanson, T. Wang, J. Sun, L. Wang, M. Kaczocha et al., Crystallographic study of FABP5 as an intracellular endocannabinoid transporter, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.70, pp.290-298, 2014.

Y. A. Hannun and C. Luberto, Ceramide in the eukaryotic stress response, Trends Cell Boil, vol.10, pp.73-80, 2000.
DOI : 10.1016/s0962-8924(99)01694-3

L. Sarda and P. Desnuelle, Actions of pancreatic lipase on esters in emulsions, Biochim. Biophys. Acta, vol.30, pp.513-521, 1958.

H. Chahinian, J. Fantini, N. Garmy, G. Manco, and L. Sarda, Non-lipolytic and lipolytic sequence-related carboxylesterases: A comparative study of the structure-function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase, Biochim. Biophys. Acta, vol.1801, pp.1195-1204, 2010.

M. V. Airola, W. J. Allen, M. J. Pulkoski-gross, L. M. Obeid, R. C. Rizzo et al., Structural Basis for Ceramide Recognition and Hydrolysis by Human Neutral Ceramidase, Structure, vol.23, pp.1482-1491, 2015.
DOI : 10.1016/j.str.2015.06.013

URL : https://doi.org/10.1016/j.str.2015.06.013

. Ira,

L. J. Johnston, Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes, Biochim. Biophys. Acta, vol.1778, pp.185-197, 2008.

P. Somerharju, J. A. Virtanen, K. H. Cheng, and M. Hermansson, The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis, Biochim. Biophys. Acta, vol.1788, pp.12-23, 2009.

H. W. Huang, E. M. Goldberg, and R. Zidovetzki, Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2, Biochem. Biophys. Res. Commun, vol.220, pp.834-838, 1996.

K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, vol.319, pp.1244-1247, 2008.

X. Zha, L. M. Pierini, P. L. Leopold, P. J. Skiba, I. Tabas et al., Sphingomyelinase treatment induces ATP-independent endocytosis, J. Cell Boil, vol.140, pp.39-47, 1998.

V. A. Movsesyan, B. A. Stoica, A. G. Yakovlev, S. M. Knoblach, P. M. Lea et al., Anandamide-induced cell death in primary neuronal cultures: Role of calpain and caspase pathways, Cell Death Differ, vol.11, pp.1121-1132, 2004.

A. Giuffrida, M. Beltramo, and D. Piomelli, Mechanisms of endocannabinoid inactivation: Biochemistry and pharmacology, J. Pharmacol. Exp. Ther, vol.298, pp.7-14, 2001.

D. Scala, C. Yahi, N. Fantini, J. Chahinian, and H. , Effect of sphingomyelinase on the mitochondrial toxicity of anandamide in cultured neural cells. Unpublished data, 2017.

D. Smart, M. J. Gunthorpe, J. C. Jerman, S. Nasir, J. Gray et al., The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1), Br. J. Pharmacol, vol.129, pp.227-230, 2000.

E. Ryberg, N. Larsson, S. Sjogren, S. Hjorth, N. O. Hermansson et al., The orphan receptor GPR55 is a novel cannabinoid receptor, Br. J. Pharmacol, vol.152, pp.1092-1101, 2007.

D. Scala, C. Yahi, N. Fantini, J. Chahinian, and H. , Real-time PCR determinations of CB1 and prominin mRNAs expression profile in anandamide-treated cells. Unpublished data, 2017.

L. De, M. Petrocellis, G. Nabissi, A. Santoni, and . Ligresti, Actions and Regulation of Ionotropic Cannabinoid Receptors, Adv. Pharmacol, vol.80, pp.249-289, 2017.

K. Shimasue, T. Urushidani, M. Hagiwara, and T. Nagao, Effects of anandamide and arachidonic acid on specific binding of (+)-PN200-110, diltiazem and (?)-desmethoxyverapamil to L-type Ca 2+ channel, Eur. J. Pharmacol, vol.296, pp.347-350, 1996.

M. Barann, G. Molderings, M. Bruss, H. Bonisch, B. W. Urban et al., Direct inhibition by cannabinoids of human 5-HT3A receptors: Probable involvement of an allosteric modulatory site, Br. J. Pharmacol, vol.137, pp.589-596, 2002.

M. Liu, W. Huang, D. Wu, and J. V. Priestley, TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors, Eur. J. Neurosci, vol.24, pp.1-6, 2006.

C. Nothdurfter, S. Tanasic, B. Di-benedetto, G. Rammes, E. M. Wagner et al., Impact of lipid raft integrity on 5-HT3 receptor function and its modulation by antidepressants, Neuropsychopharmacology, vol.35, pp.1510-1519, 2010.
DOI : 10.1055/s-0029-1240187

URL : https://hal.archives-ouvertes.fr/hal-00514617

H. Tsujikawa, Y. Song, M. Watanabe, H. Masumiya, S. A. Gupte et al., Cholesterol depletion modulates basal L-type Ca 2+ current and abolishes its-adrenergic enhancement in ventricular myocytes, American journal of physiology. Heart Circ. Physiol, vol.294, pp.285-292, 2008.
DOI : 10.1152/ajpheart.00824.2007

URL : http://ajpheart.physiology.org/content/ajpheart/294/1/H285.full.pdf

C. L. Chik, B. Li, E. Karpinski, and A. K. Ho, Ceramide inhibits L-type calcium channel currents in GH3 cells, Mol. Cell. Endocrinol, vol.218, pp.175-183, 2004.
DOI : 10.1016/j.mce.2003.10.048

G. Velasco, I. Galve-roperh, C. Sanchez, C. Blazquez, A. Haro et al., Cannabinoids and ceramide: Two lipids acting hand-by-hand, Life Sci, vol.77, pp.1723-1731, 2005.
DOI : 10.1016/j.lfs.2005.05.015

J. P. Truman, M. Garcia-barros, L. M. Obeid, and Y. A. Hannun, Evolving concepts in cancer therapy through targeting sphingolipid metabolism, Biochim. Biophys. Acta, vol.1841, pp.1174-1188, 2014.
DOI : 10.1016/j.bbalip.2013.12.013

URL : http://europepmc.org/articles/pmc4221100?pdf=render

K. Gustafsson, B. Sander, J. Bielawski, Y. A. Hannun, and J. Flygare, Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism, Mol. Cancer Res, vol.7, pp.1086-1098, 2009.