Molecular Neuroscience in the 21(st) Century: A Personal Perspective, Neuron, vol.96, pp.536-541, 2017. ,
Lipid rafts: Structure, function and role in HIV, Alzheimer's and prion diseases, Expert Rev. Mol. Med, vol.4, pp.1-22, 2002. ,
Functional rafts in cell membranes, Nature, vol.387, pp.569-572, 1997. ,
DOI : 10.1038/42408
Rafts defined: A report on the Keystone Symposium on Lipid Rafts and Cell Function, J. Lipid Res, vol.47, pp.1597-1598, 2006. ,
Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution, Nat. Commun, vol.3, 1256. ,
Cholesterol depletion induces large scale domain segregation in living cell membranes, Proc. Natl. Acad. Sci, vol.98, pp.13072-13077, 2001. ,
Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts, Proc. Natl. Acad. Sci, vol.110, 2013. ,
Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol, J. Boil. Chem, vol.288, pp.16855-16861, 2013. ,
Brain Lipids in Synaptic Function and Neurological Disease. Clues to Innovative Therapeutic Strategies for Brain Disorders, 2015. ,
The lipid habitats of neurotransmitter receptors in brain, Biochim. Biophys. Acta, vol.1858, pp.2662-2670, 2016. ,
Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function, Biochim. Biophys. Acta, vol.1788, pp.2345-2361, 2009. ,
URL : https://hal.archives-ouvertes.fr/hal-00481491
Lipid raft microdomains and neurotransmitter signaling, Nat. Rev. Neurosci, vol.8, pp.128-140, 2007. ,
DOI : 10.1038/nrn2059
Isolation and structure of a brain constituent that binds to the cannabinoid receptor, Science, vol.258, pp.1946-1949, 1992. ,
It's a lipid's world: Bioactive lipid metabolism and signaling in neural stem cell differentiation, Neurochem. Res, vol.37, pp.1208-1229, 2012. ,
DOI : 10.1007/s11064-011-0698-5
URL : http://europepmc.org/articles/pmc3343224?pdf=render
Cannabinoid signaling in health and disease. Can, J. Physiol. Pharmacol, vol.95, pp.311-327, 2017. ,
DOI : 10.1139/cjpp-2016-0346
URL : https://tspace.library.utoronto.ca/bitstream/1807/75838/1/cjpp-2016-0346.pdf
Cannabinoids: Between neuroprotection and neurotoxicity, Current drug targets. CNS Neurol. Disord, vol.4, pp.677-684, 2005. ,
DOI : 10.2174/156800705774933005
Biosynthetic pathways of the endocannabinoid anandamide, Chem. Biodivers, vol.4, pp.1842-1857, 2007. ,
DOI : 10.1002/cbdv.200790155
Endocannabinoids in the central nervous system-An overview, Prostaglandins Leukot. Essent. Fatty Acids, vol.66, pp.221-233, 2002. ,
Arachidonic acid as a bioactive molecule, J. Clin. Investig, vol.107, pp.1339-1345, 2001. ,
DOI : 10.1172/jci13210
URL : http://www.jci.org/articles/view/13210/files/pdf
Nature of rate-limiting steps in the soybean lipoxygenase-1 reaction, Biochemistry, vol.34, pp.14077-14092, 1995. ,
Double dioxygenation of arachidonic acid by soybean lipoxygenase-1, Biochem. Biophys. Res. Commun, vol.74, pp.949-954, 1977. ,
DOI : 10.1016/0006-291x(77)91610-2
Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase, Chem. Phys. Lipids, vol.108, pp.15-35, 2000. ,
DOI : 10.1016/s0009-3084(00)00185-7
Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data, vol.14, pp.163-167, 2017. ,
Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins, Methods Mol. Boil, vol.1583, pp.7-19, 2017. ,
Endocannabinoids: Getting the message across, Proc. Natl. Acad. Sci, vol.101, pp.8512-8513, 2004. ,
DOI : 10.1073/pnas.0402935101
URL : http://www.pnas.org/content/101/23/8512.full.pdf
Retrograde signaling by endocannabinoids, Curr. Opin. Neurobiol, vol.12, pp.324-330, 2002. ,
DOI : 10.1016/s0959-4388(02)00328-8
Surface chemistry of Alzheimer's disease: A Langmuir monolayer approach, Colloids Surf. B Biointerfaces, vol.74, pp.436-456, 2009. ,
DOI : 10.1016/j.colsurfb.2009.07.043
Disruption of anandamide aggregates studied by surface pressure measurements. Unpublished data, 2017. ,
Fatty acid incorporation is decreased in astrocytes cultured from ?-synuclein gene-ablated mice, J. Neurochem, vol.94, pp.839-849, 2005. ,
DOI : 10.1111/j.1471-4159.2005.03247.x
URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2005.03247.x/pdf
Emerging role of neuronal exosomes in the central nervous system, Front. Physiol, vol.3, p.145, 2012. ,
DOI : 10.3389/fphys.2012.00145
URL : https://hal.archives-ouvertes.fr/inserm-00733770
DMSO-induced perturbation of thermotropic properties of cholesterol-containing DPPC liposomes, Biochim. Biophys. Acta, vol.1858, pp.3024-3031, 2016. ,
DOI : 10.1016/j.bbamem.2016.09.012
Modulating the structure and properties of cell membranes: The molecular mechanism of action of dimethyl sulfoxide, J. Phys. Chem. B, vol.111, pp.10453-10460, 2007. ,
Brain lipid changes after ethanol exposure, Upsala J. Med. Sci. Suppl, vol.48, pp.245-266, 1990. ,
The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent, PLoS ONE, vol.4, p.4989, 2009. ,
URL : https://hal.archives-ouvertes.fr/hal-00481492
, Adv. Pharmacol, vol.80, pp.169-206, 2017.
Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor, J. Med. Chem, vol.45, pp.3649-3659, 2002. ,
The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer, J. Boil. Chem, vol.280, pp.29788-29795, 2005. ,
Endocannabinoid tone versus constitutive activity of cannabinoid receptors, Br. J. Pharmacol, vol.163, pp.1329-1343, 2011. ,
Transport of endocannabinoids across the plasma membrane and within the cell, FEBS J, vol.280, pp.1895-1904, 2013. ,
Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172, Proc. Natl. Acad. Sci, vol.101, pp.8756-8761, 2004. ,
Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years, Front. Mol. Neurosci, vol.10, 2017. ,
Anandamide transport: A critical review, Life Sci, vol.77, pp.1584-1604, 2005. ,
2-Arachidonoylglycerol (2-AG) membrane transport: History and outlook, AAPS J, vol.8, pp.409-412, 2006. ,
Lipid membrane domains in the brain, Biochim. Biophys. Acta, vol.1851, pp.1006-1016, 2015. ,
Cholesterol's location in lipid bilayers, Chem. Phys. Lipids, vol.199, pp.17-25, 2016. ,
Liquid Disordered-Liquid Ordered Phase Coexistence in Lipid/Cholesterol Mixtures: A Deuterium 2D NMR Exchange Study, vol.33, pp.1881-1890, 2017. ,
Surface chemistry of lipid raft and amyloid A? (1-40) Langmuir monolayer, Colloids Surf. B Biointerfaces, vol.87, pp.369-377, 2011. ,
Reconstitution of sphingolipid-cholesterol plasma membrane microdomains for studies of virus-glycolipid interactions, Methods Enzymol, vol.312, pp.495-506, 2000. ,
Interaction of Alzheimer's ?-amyloid peptides with cholesterol: Mechanistic insights into amyloid pore formation, Biochemistry, vol.53, pp.4489-4502, 2014. ,
Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells, Chem. Phys. Lipids, vol.205, pp.11-17, 2017. ,
Cholesteryl phosphocholine-A study on its interactions with ceramides and other membrane lipids, Langmuir, vol.29, pp.2319-2329, 2013. ,
Mixing properties of sphingomyelin ceramide bilayers: A simulation study, J. Phys. Chem. B, vol.116, pp.4500-4509, 2012. ,
Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis, J. Boil. Chem, vol.280, pp.12212-12220, 2005. ,
Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cancer cells, FEBS Lett, vol.579, pp.6343-6349, 2005. ,
URL : https://hal.archives-ouvertes.fr/pasteur-00167016
Cholesterol organization in membranes at low concentrations: Effects of curvature stress and membrane thickness, Biophys. J, vol.81, pp.2122-2134, 2001. ,
DOI : 10.1016/s0006-3495(01)75860-2
URL : https://doi.org/10.1016/s0006-3495(01)75860-2
Membrane organization at low cholesterol concentrations: A study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol, Biochemistry, vol.35, pp.1311-1322, 1996. ,
DOI : 10.1021/bi951953q
URL : http://www.ccmb.res.in/staff/amit/Group%20Publications/1996%20Biochemistry.pdf
Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes, J. Lipid Res, vol.53, pp.421-429, 2012. ,
A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes, Sci. Rep, 2016. ,
URL : https://hal.archives-ouvertes.fr/hal-01772916
Identification of intracellular carriers for the endocannabinoid anandamide, Proc. Natl. Acad. Sci, vol.106, pp.6375-6380, 2009. ,
DOI : 10.1073/pnas.0901515106
URL : http://www.pnas.org/content/106/15/6375.full.pdf
Fatty acid amide hydrolase: A gate-keeper of the endocannabinoid system, Sub-Cell. Biochem, vol.49, pp.101-132, 2008. ,
Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides, Nature, vol.384, pp.83-87, 1996. ,
DOI : 10.1038/384083a0
Endocannabinoid binding to the cannabinoid receptors: What is known and what remains unknown, Curr. Med. Chem, vol.17, pp.1468-1486, 2010. ,
DOI : 10.2174/092986710790980005
URL : http://europepmc.org/articles/pmc4120766?pdf=render
?)-7-Isothiocyanato-11-hydroxy-1 ,1-dimethylheptylhexahydrocannabinol (AM841), a high-affinity electrophilic ligand, interacts covalently with a cysteine in helix six and activates the CB1 cannabinoid receptor, Mol. Pharmacol, vol.68, pp.1623-1635, 2005. ,
Interaction of G protein coupled receptors and cholesterol, Chem. Phys. Lipids, vol.199, pp.61-73, 2016. ,
Are specific nonannular cholesterol binding sites present in G-protein coupled receptors?, Biochim. Biophys. Acta, vol.1788, pp.295-302, 2009. ,
DOI : 10.1016/j.bbamem.2008.11.020
URL : https://doi.org/10.1016/j.bbamem.2008.11.020
Cholesterol as modulator of receptor function, Biochemistry, vol.36, pp.10959-10974, 1997. ,
DOI : 10.1021/bi963138w
Membrane cholesterol in the function and organization of G-protein coupled receptors, Sub-Cell. Biochem, vol.51, pp.439-466, 2010. ,
The cubicon method for concentrating membrane proteins in the cubic mesophase, Nat. Protoc, vol.12, pp.1745-1762, 2017. ,
DOI : 10.1038/nprot.2017.057
New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors, Protein Sci, vol.26, pp.1493-1504, 2017. ,
Membrane protein crystallization, J. Struct. Boil, vol.142, pp.108-132, 2003. ,
GPCR crystallization using lipidic cubic phase technique, Curr. Pharm. Biotechnol, vol.15, pp.971-979, 2014. ,
DOI : 10.2174/1389201015666140922110325
A specific cholesterol binding site is established by the 2.8 Å structure of the human ? 2-adrenergic receptor, Structure, vol.16, pp.897-905, 2008. ,
DOI : 10.1016/j.str.2008.05.001
URL : https://doi.org/10.1016/j.str.2008.05.001
Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors, Curr. Top. Membr, vol.80, pp.3-23, 2017. ,
Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor, Mol. Endocrinol, vol.19, pp.588-594, 2005. ,
Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor, Sci. Rep, 2011. ,
Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains, Chem. Phys. Lipids, vol.199, pp.52-60, 2016. ,
Crystal structures of agonist-bound human cannabinoid receptor CB1, Nature, vol.547, pp.468-471, 2017. ,
Two classes of cholesterol binding sites for the ? 2 AR revealed by thermostability and NMR, Biophys. J, vol.107, pp.2305-2312, 2014. ,
Mechanism of allosteric regulation of ? 2-adrenergic receptor by cholesterol, vol.5, 2016. ,
, Crystal Structure of the Human Cannabinoid Receptor CB1. Cell, vol.167, pp.750-762, 2016.
In silico mapping of allosteric ligand binding sites in type-1 cannabinoid receptor, Biotechnol. Appl. Biochem, vol.65, pp.21-28, 2018. ,
Crystal structure of the ligand-free G-protein-coupled receptor opsin, Nature, vol.454, pp.183-187, 2008. ,
A ligand channel through the G protein coupled receptor opsin, PLoS ONE, vol.4, 2009. ,
DOI : 10.1371/journal.pone.0004382
URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0004382&type=printable
Nuclear sphingolipids: Metabolism and signaling, J. Lipid Res, vol.49, pp.1176-1186, 2008. ,
Endocannabinoids in the immune system and cancer, Prostaglandins Leukot. Essent. Fatty Acids, vol.66, pp.319-332, 2002. ,
Membrane cholesterol but not putative receptors mediates anandamide-induced hepatocyte apoptosis, Hepatology, vol.38, pp.1167-1177, 2003. ,
DOI : 10.1053/jhep.2003.50459
Modulation of the endocannabinoid system by lipid rafts, Curr. Med. Chem, vol.14, pp.2702-2715, 2007. ,
Anandamide induces cell death through lipid rafts in hepatic stellate cells, J. Gastroenterol. Hepatol, vol.25, pp.991-1001, 2010. ,
DOI : 10.1111/j.1440-1746.2009.06122.x
Lipid rafts: A nexus for endocannabinoid signaling?, Life Sci, vol.77, pp.1640-1650, 2005. ,
Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: Possible involvement of lipid rafts, Cell. Mol. Life Sci, vol.60, pp.1200-1208, 2003. ,
Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion, ACS Chem. Neurosci, vol.3, pp.364-368, 2012. ,
Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH, Biochem. J, vol.457, pp.463-472, 2014. ,
Crystallographic study of FABP5 as an intracellular endocannabinoid transporter, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.70, pp.290-298, 2014. ,
Ceramide in the eukaryotic stress response, Trends Cell Boil, vol.10, pp.73-80, 2000. ,
DOI : 10.1016/s0962-8924(99)01694-3
Actions of pancreatic lipase on esters in emulsions, Biochim. Biophys. Acta, vol.30, pp.513-521, 1958. ,
Non-lipolytic and lipolytic sequence-related carboxylesterases: A comparative study of the structure-function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase, Biochim. Biophys. Acta, vol.1801, pp.1195-1204, 2010. ,
Structural Basis for Ceramide Recognition and Hydrolysis by Human Neutral Ceramidase, Structure, vol.23, pp.1482-1491, 2015. ,
DOI : 10.1016/j.str.2015.06.013
URL : https://doi.org/10.1016/j.str.2015.06.013
,
Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes, Biochim. Biophys. Acta, vol.1778, pp.185-197, 2008. ,
The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis, Biochim. Biophys. Acta, vol.1788, pp.12-23, 2009. ,
Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2, Biochem. Biophys. Res. Commun, vol.220, pp.834-838, 1996. ,
Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, vol.319, pp.1244-1247, 2008. ,
Sphingomyelinase treatment induces ATP-independent endocytosis, J. Cell Boil, vol.140, pp.39-47, 1998. ,
Anandamide-induced cell death in primary neuronal cultures: Role of calpain and caspase pathways, Cell Death Differ, vol.11, pp.1121-1132, 2004. ,
Mechanisms of endocannabinoid inactivation: Biochemistry and pharmacology, J. Pharmacol. Exp. Ther, vol.298, pp.7-14, 2001. ,
Effect of sphingomyelinase on the mitochondrial toxicity of anandamide in cultured neural cells. Unpublished data, 2017. ,
The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1), Br. J. Pharmacol, vol.129, pp.227-230, 2000. ,
The orphan receptor GPR55 is a novel cannabinoid receptor, Br. J. Pharmacol, vol.152, pp.1092-1101, 2007. ,
Real-time PCR determinations of CB1 and prominin mRNAs expression profile in anandamide-treated cells. Unpublished data, 2017. ,
Actions and Regulation of Ionotropic Cannabinoid Receptors, Adv. Pharmacol, vol.80, pp.249-289, 2017. ,
Effects of anandamide and arachidonic acid on specific binding of (+)-PN200-110, diltiazem and (?)-desmethoxyverapamil to L-type Ca 2+ channel, Eur. J. Pharmacol, vol.296, pp.347-350, 1996. ,
Direct inhibition by cannabinoids of human 5-HT3A receptors: Probable involvement of an allosteric modulatory site, Br. J. Pharmacol, vol.137, pp.589-596, 2002. ,
TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors, Eur. J. Neurosci, vol.24, pp.1-6, 2006. ,
Impact of lipid raft integrity on 5-HT3 receptor function and its modulation by antidepressants, Neuropsychopharmacology, vol.35, pp.1510-1519, 2010. ,
DOI : 10.1055/s-0029-1240187
URL : https://hal.archives-ouvertes.fr/hal-00514617
Cholesterol depletion modulates basal L-type Ca 2+ current and abolishes its-adrenergic enhancement in ventricular myocytes, American journal of physiology. Heart Circ. Physiol, vol.294, pp.285-292, 2008. ,
DOI : 10.1152/ajpheart.00824.2007
URL : http://ajpheart.physiology.org/content/ajpheart/294/1/H285.full.pdf
Ceramide inhibits L-type calcium channel currents in GH3 cells, Mol. Cell. Endocrinol, vol.218, pp.175-183, 2004. ,
DOI : 10.1016/j.mce.2003.10.048
Cannabinoids and ceramide: Two lipids acting hand-by-hand, Life Sci, vol.77, pp.1723-1731, 2005. ,
DOI : 10.1016/j.lfs.2005.05.015
Evolving concepts in cancer therapy through targeting sphingolipid metabolism, Biochim. Biophys. Acta, vol.1841, pp.1174-1188, 2014. ,
DOI : 10.1016/j.bbalip.2013.12.013
URL : http://europepmc.org/articles/pmc4221100?pdf=render
Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism, Mol. Cancer Res, vol.7, pp.1086-1098, 2009. ,