Anisotropic similarity, a constrained affine transformation: Application to brain development analysis
Antoine Legouhy, Olivier Commowick, François Rousseau, Christian Barillot

To cite this version:

HAL Id: inserm-01871274
https://www.hal.inserm.fr/inserm-01871274
Submitted on 10 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Anisotropic similarity, a constrained affine transformation: Application to brain development analysis

Antoine Legouhy, Olivier Commowick, François Rousseau and Christian Barillot

1 Univ Rennes, CNRS, INRIA, INSERM, IRISA UMR 6074, VISAGES ERL U-1228, F-35000, Rennes, France
2 IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France

Introduction

Objective: quantify regional brain growth in 3 orthogonal directions by linearly registering subjects on a common basis.

Approach: introduce an affine transformation with constrained scaling directions (9 degrees of freedom).

Material and Methods

Affine transformation: $y = Lx + t$
$L = R_SU^T$
- U is a rotation matrix that determines scaling directions
- S is an anisotropic scaling (diagonal matrix)
- R is a rotation matrix

Anisotropic similarity: affine transformation with fixed U

Block-matching registration [1][2]:
1. Matching: find homologous blocks in both images best satisfying a similarity criterion
2. Aggregation into a global transformation by minimizing the distance between the sets of blocks

For an anisotropic similarity:
Minimize: $C(R,S,t) = \sum_i \|y_i - (RSU^T x_i + t)\|^2$, U fixed

$\tilde{t} = g - RSU^T \tilde{x}$

$\hat{C}(R,S) = \sum_i \|y'_i - RS\tilde{x}_i\|^2$
$y'_i = y_i - \tilde{g}, \tilde{x} = U^T(x_i - \tilde{x})$

$\hat{C}(q,S) = \sum_i \|y'_i - q \cdot \xi_i \cdot \tilde{g}\|^2$
$\xi_i = S\tilde{x}_i$ [3]

Matricial quaternions: $y'_i \ast q = Q_{y_i}q$ and $-q \ast \xi_i = -P_{\xi_i}q = P_{\xi_i}q$

$\hat{C}(q,S) = -q^T \left(-\sum_i (Q_{y_i} + P_{\xi_i})^2 \right) q$

$A_i = (Q_{y_i} + P_{\xi_i})^2$ and $A = \sum_i A_i$.

Alternate optimization each having an analytical solution:
- For fixed S, \tilde{q} eigenvector with smallest eigenvalue of A
- For fixed q, $\tilde{S}_{ij} = \sum_i \xi_i^T \frac{1}{A_{ij}} (\sum_i Q_{y_i} \frac{\partial P_{\xi_i}}{\partial s_j}) q$

We registered whole brain and lobes from 308 subjects onto an atlas based on this population using anisotropic similarity with chosen U.

Then we extracted the associated scaling factors describing brain growth.

Results

Scaling factors along chosen directions
Black curve represents average model
Fitted using first order rational regression: $y = \frac{ax + b}{x + c}$

Chosen scaling directions fixed on the reference image:
1. Orthogonal to the mid-sagittal plane (blue) [4]
2. and 3. Principal directions of voxel coordinates projected on mid-sagittal plane (red and green)

Scaling factors over age in years

Conclusion

We developed a method to quantify regional brain growth in 3 orthogonal directions through anisotropic similarity registration.
An interesting continuation is to compare the results among groups of population.