M. Villalba, N. Lopez-royuela, E. Krzywinska, M. Rathore, R. Hipskind et al., Chemical metabolic inhibitors for the treatment of blood-borne cancers . Anti-cancer agents in medicinal chemistry, pp.223-232, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01867009

O. Warburg, On respiratory impairment in cancer cells, Science, vol.124, pp.269-270, 1956.

M. Villalba, M. Rathore, N. Lopez-royuela, E. Krzywinska, J. Garaude et al., From tumor cell metabolism to tumor immune escape, The International Journal of Biochemistry & Cell Biology, vol.45, issue.1, pp.106-113, 2013.
DOI : 10.1016/j.biocel.2012.04.024

URL : https://hal.archives-ouvertes.fr/inserm-00726717

J. Boag, A. Beesley, M. Firth, J. Freitas, J. Ford et al., Altered glucose metabolism in childhood pre-B acute lymphoblastic leukaemia, Leukemia, vol.351, issue.10, pp.1731-1737, 2006.
DOI : 10.1056/NEJMoa033513

URL : http://www.nature.com/leu/journal/v20/n10/pdf/2404365a.pdf

I. Samudio, M. Fiegl, T. Mcqueen, K. Clise-dwyer, and M. Andreeff, The Warburg Effect in Leukemia-Stroma Cocultures Is Mediated by Mitochondrial Uncoupling Associated with Uncoupling Protein 2 Activation, Cancer Research, vol.68, issue.13, pp.5198-5205, 2008.
DOI : 10.1158/0008-5472.CAN-08-0555

S. Charni, G. De-bettignies, M. Rathore, J. Aguilo, P. Van-den-elsen et al., Oxidative Phosphorylation Induces De Novo Expression of the MHC Class I in Tumor Cells through the ERK5 Pathway, The Journal of Immunology, vol.185, issue.6, pp.3498-3503, 2010.
DOI : 10.4049/jimmunol.1001250

P. Stacpoole, L. Gilbert, R. Neiberger, P. Carney, E. Valenstein et al., Evaluation of Long-term Treatment of Children With Congenital Lactic Acidosis With Dichloroacetate, PEDIATRICS, vol.121, issue.5, pp.1223-1228, 2008.
DOI : 10.1542/peds.2007-2062

P. Stacpoole, T. Kurtz, Z. Han, and T. Langaee, Role of dichloroacetate in the treatment of genetic mitochondrial diseases???, Advanced Drug Delivery Reviews, vol.60, issue.13-14, pp.1478-1487, 2008.
DOI : 10.1016/j.addr.2008.02.014

E. Michelakis, G. Sutendra, P. Dromparis, L. Webster, A. Haromy et al., Metabolic Modulation of Glioblastoma with Dichloroacetate, Science Translational Medicine, vol.462, issue.7274, pp.31-34, 2010.
DOI : 10.1038/nature08617

D. Flavin, Non-Hodgkin's Lymphoma Reversal with Dichloroacetate, Journal of Oncology, vol.33, issue.3, 2010.
DOI : 10.1016/0021-9150(79)90180-1

E. Babu, S. Ramachandran, V. Coothankandaswamy, S. Elangovan, P. Prasad et al., Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate, Oncogene, vol.141, issue.38, pp.4026-4037, 2011.
DOI : 10.1007/s11010-010-0397-6

S. Bonnet, S. Archer, J. Allalunis-turner, A. Haromy, C. Beaulieu et al., A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth, Cancer Cell, vol.11, issue.1, pp.37-51, 2007.
DOI : 10.1016/j.ccr.2006.10.020

URL : https://doi.org/10.1016/j.ccr.2006.10.020

D. Flavin, Medullary thyroid carcinoma relapse reversed with dichloroacetate: A case report, Oncology Letters, vol.1, issue.5, pp.889-891, 2010.
DOI : 10.3892/ol_00000158

D. Brandsma, T. Dorlo, J. Haanen, J. Beijnen, and W. Boogerd, Severe encephalopathy and polyneuropathy induced by dichloroacetate, Journal of Neurology, vol.324, issue.31, pp.2099-2100, 2010.
DOI : 10.1126/scitranslmed.3000677

D. Heshe, S. Hoogestraat, C. Brauckmann, U. Karst, J. Boos et al., Dichloroacetate metabolically targeted therapy defeats cytotoxicity of standard anticancer drugs, Cancer Chemotherapy and Pharmacology, vol.329, issue.3, pp.647-655, 2011.
DOI : 10.1016/j.crvi.2005.08.007

URL : https://hal.archives-ouvertes.fr/hal-00595954

L. Stockwin, S. Yu, S. Borgel, C. Hancock, T. Wolfe et al., Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC, International Journal of Cancer, vol.283, issue.11, pp.2510-2519, 2010.
DOI : 10.1042/bj1410761

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.25499/pdf

E. Gottlieb and K. Vousden, p53 regulation of metabolic pathways . Cold Spring Harbor perspectives in biology, p.1040, 2010.
DOI : 10.1101/cshperspect.a001040

URL : http://cshperspectives.cshlp.org/content/2/4/a001040.full.pdf

A. Puzio-kuter, The Role of p53 in Metabolic Regulation, Genes & Cancer, vol.2, issue.4, pp.385-391, 2011.
DOI : 10.1177/1947601911409738

Z. Feng, W. Hu, E. De-stanchina, A. Teresky, J. S. Lowe et al., The Regulation of AMPK ??1, TSC2, and PTEN Expression by p53: Stress, Cell and Tissue Specificity, and the Role of These Gene Products in Modulating the IGF-1-AKT-mTOR Pathways, Cancer Research, vol.67, issue.7, pp.3043-3053, 2007.
DOI : 10.1158/0008-5472.CAN-06-4149

P. Mungai, G. Waypa, A. Jairaman, M. Prakriya, D. Dokic et al., Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels, Molecular and Cellular Biology, vol.31, issue.17, pp.3531-3545, 2011.
DOI : 10.1128/MCB.05124-11

URL : http://mcb.asm.org/content/31/17/3531.full.pdf

R. Jones, D. Plas, S. Kubek, M. Buzzai, J. Mu et al., AMP-Activated Protein Kinase Induces a p53-Dependent Metabolic Checkpoint, Molecular Cell, vol.18, issue.3, pp.283-293, 2005.
DOI : 10.1016/j.molcel.2005.03.027

URL : https://doi.org/10.1016/j.molcel.2005.03.027

M. Hollstein, D. Sidransky, B. Vogelstein, and C. Harris, p53 mutations in human cancers, Science, vol.253, issue.5015, pp.49-53, 1991.
DOI : 10.1126/science.1905840

URL : https://zenodo.org/record/1230948/files/article.pdf

P. Muller and K. Vousden, p53 mutations in cancer, Nature Cell Biology, vol.19, issue.1, pp.2-8, 2013.
DOI : 10.1038/sj.onc.1201857

P. Muller and K. Vousden, Mutant p53 in Cancer: New Functions and Therapeutic Opportunities, Cancer Cell, vol.25, issue.3, pp.304-317, 2014.
DOI : 10.1016/j.ccr.2014.01.021

URL : https://doi.org/10.1016/j.ccr.2014.01.021

G. Zhou, J. Wang, M. Zhao, T. Xie, N. Tanaka et al., Gain-of-Function Mutant p53 Promotes Cell Growth and Cancer Cell Metabolism via Inhibition of AMPK Activation, Molecular Cell, vol.54, issue.6, pp.960-974, 2014.
DOI : 10.1016/j.molcel.2014.04.024

URL : https://doi.org/10.1016/j.molcel.2014.04.024

M. Diccianni, J. Yu, M. Hsiao, S. Mukherjee, L. Shao et al., Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia, Blood, vol.84, pp.3105-3112, 1994.

S. El-rouby, A. Thomas, D. Costin, C. Rosenberg, M. Potmesil et al., p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression, Blood, vol.82, pp.3452-3459, 1993.

J. Malcikova, J. Smardova, L. Rocnova, B. Tichy, P. Kuglik et al., Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage, Blood, vol.16, issue.9, pp.5307-5314, 2009.
DOI : 10.1128/MCB.16.9.4952

C. Sander, T. Yano, H. Clark, C. Harris, D. Longo et al., p53 mutation is associated with progression in follicular lymphomas, Blood, vol.82, pp.1994-2004, 1993.

C. Agnoletto, L. Brunelli, E. Melloni, R. Pastorelli, F. Casciano et al., The anti-leukemic activity of sodium dichloroacetate in p53mutated/null cells is mediated by a p53-indepen- dent ILF3/p21 pathway, Oncotarget, 2014.

C. Agnoletto, E. Melloni, F. Casciano, G. Rigolin, E. Rimondi et al., Sodium dichloroacetate exhibits anti-leukemic activity in B-chronic lymphocytic leukemia (B-CLL) and synergizes with the p53 activator Nutlin-3, Oncotarget, vol.5, issue.12, pp.4347-4360, 2014.
DOI : 10.18632/oncotarget.2018

G. Sutendra, P. Dromparis, A. Kinnaird, T. Stenson, A. Haromy et al., Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer, Oncogene, vol.30, issue.13, pp.1638-1650, 2013.
DOI : 10.1038/onc.2011.113

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-1174, 2001.
DOI : 10.1172/JCI13505

A. Green, N. Chapuis, T. Maciel, L. Willems, M. Lambert et al., The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation, Blood, vol.22, issue.9, pp.4262-4273, 2010.
DOI : 10.1038/leu.2008.144

R. Okoshi, T. Ozaki, H. Yamamoto, K. Ando, N. Koida et al., Activation of AMP-activated Protein Kinase Induces p53-dependent Apoptotic Cell Death in Response to Energetic Stress, Journal of Biological Chemistry, vol.62, issue.7, pp.3979-3987, 2008.
DOI : 10.1074/jbc.M606357200

B. Liu, Y. Cheng, B. Zhang, H. Bian, and J. Bao, Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS???p38???p53 pathway, Cancer Letters, vol.275, issue.1, pp.54-60, 2009.
DOI : 10.1016/j.canlet.2008.09.042

B. Liu, Y. Chen, D. Clair, and . St, ROS and p53: A versatile partnership, Free Radical Biology and Medicine, vol.44, issue.8, pp.1529-1535, 2008.
DOI : 10.1016/j.freeradbiomed.2008.01.011

URL : http://europepmc.org/articles/pmc2359898?pdf=render

W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine et al., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proceedings of the National Academy of Sciences, vol.43, issue.42, pp.7455-7460, 2010.
DOI : 10.1021/bi048560o

URL : http://www.pnas.org/content/107/16/7455.full.pdf

A. Sablina, A. Budanov, G. Ilyinskaya, L. Agapova, J. Kravchenko et al., The antioxidant function of the p53 tumor suppressor, Nature Medicine, vol.56, issue.12, pp.1306-1313, 2005.
DOI : 10.1038/nature01819

M. Rathore, A. Saumet, J. Rossi, C. De-bettignies, D. Tempe et al., The NF-??B member p65 controls glutamine metabolism through miR-23a, The International Journal of Biochemistry & Cell Biology, vol.44, issue.9, pp.1448-1456, 2012.
DOI : 10.1016/j.biocel.2012.05.011

N. Lopez-royuela, M. Rathore, N. Allende-vega, J. Annicotte, L. Fajas et al., Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells, The International Journal of Biochemistry & Cell Biology, vol.53, pp.253-261, 2014.
DOI : 10.1016/j.biocel.2014.05.026

URL : https://hal.archives-ouvertes.fr/inserm-01867017

A. Agliano, I. Martin-padura, P. Mancuso, P. Marighetti, C. Rabascio et al., -related strains, International Journal of Cancer, vol.87, issue.9, pp.2222-2227, 2008.
DOI : 10.1016/S0002-9440(10)65022-5

A. Agliano, I. Martin-padura, P. Marighetti, G. Gregato, A. Calleri et al., Therapeutic Effect of Lenalidomide in a Novel Xenograft Mouse Model of Human Blastic NK Cell Lymphoma/Blastic Plasmacytoid Dendritic Cell Neoplasm, Clinical Cancer Research, vol.17, issue.19, pp.6163-6173, 2011.
DOI : 10.1158/1078-0432.CCR-11-0212

W. Freed-pastor and C. Prives, Mutant p53: one name, many proteins, Genes & Development, vol.26, issue.12, pp.1268-1286, 2012.
DOI : 10.1101/gad.190678.112

URL : http://genesdev.cshlp.org/content/26/12/1268.full.pdf

D. Li, N. Marchenko, R. Schulz, V. Fischer, T. Velasco-hernandez et al., Functional Inactivation of Endogenous MDM2 and CHIP by HSP90 Causes Aberrant Stabilization of Mutant p53 in Human Cancer Cells, Molecular Cancer Research, vol.9, issue.5, pp.577-588, 2011.
DOI : 10.1158/1541-7786.MCR-10-0534

H. Pelicano, J. Carew, T. Mcqueen, M. Andreeff, W. Plunkett et al., Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C, Leukemia, vol.265, issue.4, pp.610-619, 2006.
DOI : 10.1074/jbc.M309054200

URL : http://www.nature.com/leu/journal/v20/n4/pdf/2404140a.pdf

Q. Yao, R. Nishiuchi, T. Kitamura, and J. Kersey, Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway, Leukemia, vol.103, issue.9, pp.1605-1612, 2005.
DOI : 10.1182/blood-2003-02-0418

Q. Yao, R. Nishiuchi, Q. Li, A. Kumar, W. Hudson et al., FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases, Clin Cancer Res, vol.9, pp.4483-4493, 2003.

R. Jones and C. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth, Genes & Development, vol.23, issue.5, pp.537-548, 2009.
DOI : 10.1101/gad.1756509

URL : http://genesdev.cshlp.org/content/23/5/537.full.pdf

S. Suzuki, T. Tanaka, M. Poyurovsky, H. Nagano, T. Mayama et al., Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species, Proceedings of the National Academy of Sciences, vol.264, issue.41, pp.7461-7466, 2010.
DOI : 10.1016/S0076-6879(96)64044-0

URL : http://www.pnas.org/content/107/16/7461.full.pdf

S. Matoba, J. Kang, W. Patino, A. Wragg, M. Boehm et al., p53 Regulates Mitochondrial Respiration, Science, vol.312, issue.5780, pp.1650-1653, 2006.
DOI : 10.1126/science.1126863

L. Pradelli, M. Beneteau, C. Chauvin, M. Jacquin, S. Marchetti et al., Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation, Oncogene, vol.55, issue.11, pp.1641-1652, 2010.
DOI : 10.1016/j.cell.2005.06.009

URL : http://www.nature.com/onc/journal/v29/n11/pdf/onc2009448a.pdf

K. Vousden and C. Prives, Blinded by the Light: The Growing Complexity of p53, Cell, vol.137, issue.3, pp.413-431, 2009.
DOI : 10.1016/j.cell.2009.04.037

S. Mathupala, C. Heese, and P. Pedersen, Glucose Catabolism in Cancer Cells, Journal of Biological Chemistry, vol.44, issue.36, pp.22776-22780, 1997.
DOI : 10.1007/978-3-662-22275-1

URL : http://www.jbc.org/content/276/46/43407.full.pdf

C. Preudhomme and P. Fenaux, THE CLINICAL SIGNIFICANCE OF MUTATIONS OF THE P52 TUMOUR SUPPRESSOR GENE IN HAEMATOLOGICAL MALIGNANCIES, British Journal of Haematology, vol.98, issue.3, pp.502-511, 1997.
DOI : 10.1046/j.1365-2141.1997.2403057.x

S. Charni, J. Aguilo, J. Garaude, G. De-bettignies, C. Jacquet et al., ERK5 Knockdown Generates Mouse Leukemia Cells with Low MHC Class I Levels That Activate NK Cells and Block Tumorigenesis, The Journal of Immunology, vol.182, issue.6, pp.3398-3405, 2009.
DOI : 10.4049/jimmunol.0803006

URL : https://hal.archives-ouvertes.fr/hal-00368654

N. Allende-vega, A. Sparks, D. Lane, and M. Saville, MdmX is a substrate for the deubiquitinating enzyme USP2a, Oncogene, vol.7, issue.3, pp.432-441, 2010.
DOI : 10.1038/sj.onc.1204656

URL : http://www.nature.com/onc/journal/v29/n3/pdf/onc2009330a.pdf

J. Bourdon, M. Khoury, A. Diot, L. Baker, K. Fernandes et al., p53 mutant breast cancer patients expressing p53?? have as good a prognosis as wild-type p53 breast cancer patients, Breast Cancer Research, vol.56, issue.1, p.7, 2011.
DOI : 10.1111/j.1365-2559.2010.03533.x

URL : https://hal.archives-ouvertes.fr/inserm-00663689

S. Melser, E. Chatelain, J. Lavie, W. Mahfouf, C. Jose et al., Rheb Regulates Mitophagy Induced by Mitochondrial Energetic Status, Cell Metabolism, vol.17, issue.5, pp.719-730, 2013.
DOI : 10.1016/j.cmet.2013.03.014

URL : https://hal.archives-ouvertes.fr/hal-00905845