G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, R. D. Schreiber et al., Cancer immunoediting: from immunosurveillance to tumor escape Interferons, immunity and cancer immunoediting Therapeutic targets in cancer cell metabolism and autophagy, Dimopoulos, M.A. Improved survival of patients with multiple myeloma after the introduction of novel agents and the applicability of the International Staging System (ISS): An analysis of the Greek Myeloma Study Group (GMSG), pp.991-998, 2002.

N. W. Van-de-donk, S. Kamps, T. Mutis, H. M. Lokhorst, G. Alatrash et al., Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma Vaccines as consolidation therapy for myeloid leukemia: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia, Leukemia Leukemia Exp. Rev. Hematol. J. Clin. Oncol, vol.23, issue.416, pp.1152-1157, 2009.

J. Garaude and N. Allende-vega, From tumor cell metabolism to tumor immune escape On respiratory impairment in cancer cells, Int. J. Biochem. Cell Biol. Science, vol.4510, issue.13215, pp.106-113, 1956.

T. Li, N. Kon, L. Jiang, M. Tan, T. Ludwig et al.,

W. Gu, Tumor Suppression in the Absence of p53-Mediated Cell- Cycle Arrest, Apoptosis, and Senescence, Cell, vol.201211, issue.1496, pp.1269-1283

L. Li, M. Li, C. Sun, L. Francisco, S. Chakraborty et al.,

L. P. Zhao, J. Radich, S. Forman, S. Bhatia, R. Bhatia et al., Altered hematopoietic cell gene expression precedes development of therapy-related myelodysplasia/acute myeloid leukemia and identifies patients at risk The secrets of the bone marrow niche: Metabolic priming for AML, Cancer Cell Nat. Med. J.S, vol.2012, issue.186, pp.591-605, 2011.

E. Clark, J. F. Mcmichael, R. J. Meyer, J. K. Schindler, C. S. Pohl et al., Recurring mutations found by sequencing an acute myeloid leukemia genome effect: molecular basis for the reprogramming of cancer cell metabolism, Mitochondrial uncoupling and the, pp.361-1058, 2009.

K. Lythgoe, S. Dong, S. Lonial, X. Wang, and G. Chen, Z.; Xie, J

T. L. Gu, R. D. Polakiewicz, J. L. Roesel, T. J. Boggon, F. R. Khuri et al., Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies, ra73. [16] Wang, pp.399-411, 2009.

J. Garaude, N. Allende-vega, I. Samudio, R. Harmancey, M. Fiegl et al., From tumor cell metabolism to tumor immune escape Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction Inhibition of fatty acid metabolism reduces human myeloma cells proliferation, e46484. [20] Carr, E.L, pp.142-156, 2010.

A. Aghvanyan, A. M. Turay, K. A. Frauwirth, M. G. Rathore, A. Saumet et al., Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation The NF-kappaB member p65 controls glutamine metabolism through miR-23a NF-kappaB: linking inflammation and immunity to cancer development and progression, J. Immunol. Int. J. Biochem. Cell Biol. Nat. Rev. Immunol, vol.18523, issue.44910, pp.1037-1044, 2005.

J. Guiu, V. Rodilla, J. Ingles-esteve, J. Nomdedeu, B. Bellosillo et al., The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways MYC, microRNAs and glutamine addiction in cancers Glutamine: pleiotropic roles in tumor growth and stress resistance Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts Glutaminolysis activates Rag- mTORC1 signaling Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells, e4715, pp.268-281, 2004.

X. Y. Zhang, H. K. Pfeiffer, I. Nissim, E. Daikhin, M. Yudkoff et al., Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction Oxidative phosphorylation induces de novo expression of the MHC class I in tumor cells through the ERK5 pathway, Proc. Natl. Acad. Sci. USA, pp.105-18782, 2008.

R. Dinavahi, K. F. Wilson, A. L. Ambrosio, S. M. Dias, C. V. Dang et al., Targeting mitochondrial glutaminase activity inhibits oncogenic transformation Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proc. Natl. Acad. Sci. USA, pp.207-219, 2010.

Y. Suzuki, S. Sugano, E. Sato, T. Nagao, K. Yokote et al., Phosphate-activated glutaminase (GLS2), a p53- inducible regulator of glutamine metabolism and reactive oxygen species Glutamine addiction: a new therapeutic target in cancer Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase, Proc. Natl. Acad. Sci. USA. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2- (5-phenylacetamido-1, pp.7461-7466, 1978.

, Biochem. J, vol.40640, issue.3, pp.407-414, 2007.

A. Le, A. N. Lane, M. Hamaker, S. Bose, A. Gouw et al., Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cellsGlioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling Epigallocatechin-3-gallate (EGCG) for Clinical Trials: More Pitfalls than Promises? Evaluation of longterm treatment of children with congenital lactic acidosis with dichloroacetate, Cell Metab. Cancer Res. Int. J. Mol. Sci. P.R.; Valenstein, E. Pediatrics, vol.2012, issue.1295, pp.110-121, 2008.

A. Haromy, E. Niven, C. Maguire, T. L. Gammer, J. R. Mackey et al., Metabolic modulation of glioblastoma with dichloroacetate Non-Hodgkin's Lymphoma Reversal with Dichloroacetate Development of a dichloroacetic acidhemoglobin conjugate as a potential targeted anti-cancer therapeutic AMPK as a metabolic tumor suppressor: control of metabolism and cell growth AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress, Sci. Transl. Med. J. Oncol. Biotechnol. Bioengineer. Z.; Zang, M Future oncology Nature Aeberhard, L.; Kress, T.R.; Muthalagu, N.; Rycak, L. Nature, vol.10850, issue.6374007391, pp.1413-1420, 2010.

D. R. Alessi, K. Sakamoto, J. Bayascas, J. Blagih, C. M. Krawczyk et al., LKB1 and AMPK: central regulators of lymphocyte metabolism and function AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies Systemic treatment with the antidiabetic drug metformin selectively impairs p53- deficient tumor cell growth, LKB1-dependent signaling pathways, pp.137-163, 2006.

S. A. Pierce, C. P. Escalante, H. M. Kantarjian, S. M. O-'brien, and P. L. Tazzari, Relation between the duration of remission and hyperglycemia during induction chemotherapy for acute lymphocytic leukemia with a hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone/methotrexate-cytarabine regimen, Cancer, vol.100, issue.6, pp.1179-1185, 2004.

M. Battistelli, E. Falcieri, R. Bortul, F. Melchionda, I. Iacobucci et al., AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications Differential impact of structurally different anti-diabetic drugs on proliferation and chemosensitivity of acute lymphoblastic leukemia cells, Platanias, L.C. Antileukemic effects of AMPK activators on BCR-ABL-expressing cells. Blood, pp.91-100, 2011.

C. Arnoult, O. Boyer, V. Bardet, S. Park, M. Foretz et al., Viollet, B.; Ifrah, N.; Dreyfus, F C

P. Mayeux, D. Bouscary, and J. Tamburini, The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation, Blood Viollet, B.; Guigas, B, vol.61, issue.20, pp.116-4262, 2010.

F. Andreelli, W. Hu, E. De-stanchina, A. K. Teresky, S. Jin et al., Cellular and molecular mechanisms of metformin: an overview The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways p53 regulation of metabolic pathways The Role of p53 in metabolic regulation Mutations in the p53 gene occur in diverse human tumour types Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage Reactivation of p53: from peptides to small molecules Rescue of mutant p53 transcription function by ellipticine Apoptosis: An Int, a001040.-1 induces apoptosis in acute myeloid leukaemia cells with p53 gene deletion Liu, Y.Y.; Zhao, Y. Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells, pp.253-270, 1989.

D. Li, N. D. Marchenko, R. Schulz, V. Fischer, T. Velasco-hernandez et al., Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells Histone deacetylase inhibitors in cancer therapy Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer, Mol. Cancer Res. J. Clin. Oncol. Nat. Rev. Cancer, vol.6, issue.95321, pp.577-588, 2006.

N. Munshi, X. Gu, C. Bailey, M. Joseph, T. A. Libermann et al., Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas Non-peptide macrocyclic histone deacetylase inhibitors derived from tricyclic ketolide skeleton Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries The critical role of the class III histone deacetylase SIRT1 in cancer PPAR control: it's SIRTainly as easy as PGC, Jaiswal, A.K. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes, pp.540-545, 1998.

X. Li, N. Kazgan, and G. Arena, Mammalian Sirtuins and Energy Metabolism, International Journal of Biological Sciences, vol.7, issue.5, pp.575-587, 2011.
DOI : 10.7150/ijbs.7.575

L. Laurenti, G. Gaidano, F. Malavasi, S. Deaglio, C. Craddock et al., Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors, Cancer Res. Leukemia, vol.85, issue.1310, pp.71-4473, 2005.

L. Li, L. Wang, and Z. Wang,

W. Chen, R. Bhatia, and G. Arunachalam, Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib, Cancer Cell, vol.2012, issue.212, pp.266-281

I. Rahman, Regulation of SIRT1 in cellular functions: role of polyphenols, Arch Biochem Biophys, vol.50187, issue.1, pp.79-90, 2010.

K. Li, J. Luo, . N. The, S. Lain, J. J. Hollick et al., Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator, Am. J. Med. Sci.J.; Pass, G Cancer Cell, vol.4, issue.135, pp.104-106, 2008.

M. L. Martinez-chantar, M. Varela-rey, D. Rotili, A. Nebbioso, S. Ropero et al.,

M. Witt, A. Villar-garea, A. Imhof, J. M. Mato, M. Esteller et al., Salermide, a Sirtuin inhibitor with a strong cancerspecific proapoptotic effect, Oncogene, vol.90, issue.6, pp.28-781, 2009.

D. Rotili, D. Tarantino, A. Nebbioso, C. Paolini, C. Huidobro et al., Discovery of Salermide-Related Sirtuin Inhibitors: Binding Mode Studies and Antiproliferative Effects in Cancer Cells Including Cancer Stem Cells, Journal of Medicinal Chemistry, vol.55, issue.24, pp.55-10937
DOI : 10.1021/jm3011614

J. S. Teodoro, B. P. Hubbard, A. T. Varela, J. G. Davis, B. Varamini et al., SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function Analysis of resveratrol-induced apoptosis in human B-cell chronic leukaemia, Cell Metab. Br. J. Haematol, vol.2012, issue.1174, pp.675-690, 2002.

A. Basile, G. V. Sherbet, P. Comi, P. Jezek, L. Plecita-hlavata et al., Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development Mitochondria: From bioenergetics to the metabolic regulation of carcinogenesis, Biochem. Pharmacol. Int. J. Biochem. Cell Biol. Front. Biosci. L N, vol.42, issue.14, pp.74-1568, 2007.

R. Rossignol, P. Jezek, F. M. Burnet, J. Garaude, S. Kaminski et al., The concept of immunological surveillance Impaired anti-leukemic immune response in PKCthetadeficient mice, The protooncogene Vav1 regulates murine leukemia virus-induced Tcell leukemogenesis. Oncoimmunology, pp.43-950, 1970.

A. Anel, J. I. Aguilo, E. Catalan, J. Garaude, M. G. Rathore et al., Protein Kinase c-theta (PKC-theta) in natural killer cell function and anti-tumor immunity, Front. Immunol, issue.3, p.187, 2012.

J. I. Aguilo, J. Garaude, J. Pardo, M. Villalba, and A. Anel, Protein Kinase C-?? Is Required for NK Cell Activation and In Vivo Control of Tumor Progression, The Journal of Immunology, vol.182, issue.4, pp.1972-1981, 2009.
DOI : 10.4049/jimmunol.0801820

URL : https://hal.archives-ouvertes.fr/hal-02194087

A. Alcami and U. Koszinowski, Viral mechanisms of immune evasion, Trends in Microbiology, vol.8, issue.9, pp.410-418, 2000.
DOI : 10.1016/S0966-842X(00)01830-8

N. Aptsiauri, T. Cabrera, A. Garcia-lora, M. A. Lopez-nevot, F. Ruiz-cabello et al., MHC Class I Antigens and Immune Surveillance in Transformed Cells, Int. Rev. Cytol, vol.256, pp.139-189, 2007.
DOI : 10.1016/S0074-7696(07)56005-5

M. Campoli and S. Ferrone, HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance, Oncogene, vol.14, issue.45, pp.27-5869, 2008.
DOI : 10.1128/MCB.20.7.2592-2603.2000

E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, Functions of natural killer cells, Nature Immunology, vol.178, issue.5, pp.503-510, 2008.
DOI : 10.1073/pnas.050588297

URL : https://hal.archives-ouvertes.fr/hal-00294184

B. Pan and S. Lentzsch, The application and biology of immunomodulatory drugs (IMiDs) in cancer, Pharmacology & Therapeutics, vol.136, issue.1, pp.56-68
DOI : 10.1016/j.pharmthera.2012.07.004

T. Latif, N. Chauhan, R. Khan, A. Moran, and S. Z. Usmani, Thalidomide and its analogues in the treatment of Multiple Myeloma, Experimental Hematology & Oncology, vol.1, issue.1, p.27, 2012.
DOI : 10.1182/blood-2011-01-331454

T. Ito, H. Ando, T. Suzuki, T. Ogura, K. Hotta et al., Identification of a Primary Target of Thalidomide Teratogenicity, Science, vol.104, issue.8, pp.327-1345, 2010.
DOI : 10.1073/pnas.0611311104

Y. X. Zhu, K. M. Kortuem, and A. K. Stewart, Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma, Leukemia & Lymphoma, vol.118, issue.4, 2012.
DOI : 10.1016/j.yexcr.2007.06.020

T. Hayashi, T. Hideshima, M. Akiyama, K. Podar, H. Yasui et al.,

K. C. Anderson, Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application, Br. J. Haematol, vol.128, issue.2, pp.192-203, 2005.

L. J. Reitzer, B. M. Wice, and D. Kennell, Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells, J. Biol. Chem, issue.8, pp.254-2669, 1979.

C. Oliveras-ferraros, S. Cufi, A. Vazquez-martin, O. J. Menendez, J. Bosch-barrera et al., Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation, Cell Cycle, vol.405, issue.5, p.11, 2012.
DOI : 10.1016/j.bbrc.2011.01.075

S. Charni, J. I. Aguilo, J. Garaude, G. De-bettignies, C. Jacquet et al., Anel, A.; Villalba, M. ERK5 Knockdown generates mouse leukemia cells with low MHC class I levels that activate NK cells and block tumorigenesis, J. Immunol, issue.6, pp.182-3398, 2009.

J. Garaude, S. Cherni, S. Kaminski, E. Delepine, C. Chable-bessia et al., A.; Villalba, M. ERK5 activates NF-kappaB in leukemic T cells and is essential for their growth in vivo, J. Immunol, issue.11, pp.177-7607, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-01621406

J. Garaude, S. Kaminski, S. Cherni, R. A. Hipskind, and M. Villalba, The Role of ERK5 in T-Cell Signalling, Scandinavian Journal of Immunology, vol.163, issue.6, pp.62-515, 2005.
DOI : 10.1128/MCB.20.22.8382-8389.2000

URL : https://hal.archives-ouvertes.fr/hal-02262228

S. Alvarez-fernandez, M. J. Ortiz-ruiz, T. Parrott, S. Zaknoen, E. M. Ocio et al., Esparis-Ogando, A.; Pandiella, A. Potent Antimyeloma Activity of a Novel ERK5, CDK Inhibitor. Clin. Cancer Res, issue.10, pp.19-2677, 2013.

L. Galluzzi, E. Vacchelli, A. Eggermont, W. H. Fridman, J. Galon et al., Adoptive cell transfer immunotherapy, pp.306-315, 2012.

M. Ardolino, A. Zingoni, C. Cerboni, F. Cecere, A. Soriani et al., DNAM-1 ligand expression on Agstimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction, Blood, issue.18, pp.117-4778, 2011.

R. Wang and D. R. Green, Metabolic checkpoints in activated T cells, Nature Immunology, vol.4, issue.10, pp.13-907
DOI : 10.1016/j.cmet.2011.06.017