M. Singer, C. Deutschman, C. Seymour, M. Shankar-hari, D. Annane et al., The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), JAMA, vol.315, issue.8, pp.801-811, 2016.
DOI : 10.1001/jama.2016.0287

D. Annane, P. Aegerter, M. Jars-guincestre, and B. Guidet, Current Epidemiology of Septic Shock, American Journal of Respiratory and Critical Care Medicine, vol.168, issue.2, pp.165-72, 2003.
DOI : 10.1001/jama.1996.03540110043030

J. Cohen, C. Brun-buisson, A. Torres, and J. Jorgensen, Diagnosis of infection in sepsis: An evidence-based review, Critical Care Medicine, vol.32, issue.Supplement, pp.466-94, 2004.
DOI : 10.1097/01.CCM.0000145917.89975.F5

R. Dellinger, M. Levy, A. Rhodes, D. Annane, H. Gerlach et al., Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012, Intensive Care Medicine, vol.22, issue.Suppl, pp.165-228, 2012.
DOI : 10.1177/0148607198022004212

C. Adrie, C. Alberti, C. Chaix-couturier, E. Azoulay, D. Lassence et al., Epidemiology and economic evaluation of severe sepsis in France: age, severity, infection site, and place of acquisition (community, hospital, or intensive care unit) as determinants of workload and cost, Journal of Critical Care, vol.20, issue.1, pp.46-58, 2005.
DOI : 10.1016/j.jcrc.2004.10.005

M. Levy, M. Fink, J. Marshall, E. Abraham, D. Angus et al., ATS/SIS international Sepsis definitions conference, pp.1250-1256, 2001.

M. Birmingham, J. Hassett, J. Schentag, and J. Paladino, Assessing Antibacterial Pharmacoeconomics in the Intensive Care Unit, PharmacoEconomics, vol.12, issue.6, pp.637-684, 1997.
DOI : 10.2165/00019053-199712060-00004

E. Rivers, B. Nguyen, S. Havstad, J. Ressler, A. Muzzin et al., Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock, New England Journal of Medicine, vol.345, issue.19, pp.1368-77, 2001.
DOI : 10.1056/NEJMoa010307

R. Dellinger, The Surviving Sepsis Campaign: Where have we been and where are we going?, Cleveland Clinic Journal of Medicine, vol.82, issue.4, pp.237-281, 2015.
DOI : 10.3949/ccjm.82gr.15001

P. Bochud, M. Bonten, O. Marchetti, and C. T. , Antimicrobial therapy for patients with severe sepsis and septic shock: An evidence-based review, Critical Care Medicine, vol.32, issue.Supplement, pp.495-512, 2004.
DOI : 10.1097/01.CCM.0000143118.41100.14

B. Tang, G. Eslick, J. Craig, and A. Mclean, Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis, The Lancet Infectious Diseases, vol.7, issue.3, pp.210-217, 2007.
DOI : 10.1016/S1473-3099(07)70052-X

M. Adib-conquy, M. Monchi, C. Goulenok, I. Laurent, M. Thuong et al., INCREASED PLASMA LEVELS OF SOLUBLE TRIGGERING RECEPTOR EXPRESSED ON MYELOID CELLS 1 AND PROCALCITONIN AFTER CARDIAC SURGERY AND CARDIAC ARREST WITHOUT INFECTION, Shock, vol.28, issue.4, pp.406-416, 2007.
DOI : 10.1097/shk.0b013e3180488154

F. Bozza, J. Salluh, A. Japiassu, M. Soares, E. Assis et al., Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis, Critical Care, vol.11, issue.2, p.49, 2007.
DOI : 10.1186/cc5783

M. Drancourt, Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review, Clinical Microbiology and Infection, vol.16, issue.11, pp.1620-1625, 2010.
DOI : 10.1111/j.1469-0691.2010.03290.x

L. Ferreira, F. Sánchez-juanes, M. González-avila, D. Cembrero-fuciños, A. Herrero-hernández et al., Direct Identification of Urinary Tract Pathogens from Urine Samples by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry, Journal of Clinical Microbiology, vol.48, issue.6, pp.2110-2115, 2010.
DOI : 10.1128/JCM.02215-09

N. Singhal, M. Kumar, P. Kanaujia, and J. Virdi, MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis, Frontiers in Microbiology, vol.54, issue.512, p.791, 2015.
DOI : 10.1016/j.jcv.2012.04.019

URL : https://doi.org/10.3389/fmicb.2015.00791

R. Ouedraogo, C. Flaudrops, B. Amara, A. Capo, C. Raoult et al., Global Analysis of Circulating Immune Cells by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry, PLoS ONE, vol.8, issue.10, p.13691, 2010.
DOI : 10.1371/journal.pone.0013691.s001

C. Buchanan, A. Malik, and G. Cooper, Direct visualisation of peptide hormones in cultured pancreatic islet alpha- and beta-cells by intact-cell mass spectrometry, Rapid Communications in Mass Spectrometry, vol.279, issue.21, pp.3452-3460, 2007.
DOI : 10.1042/bj2440449

B. Munteanu, C. Von-reitzenstein, G. Hänsch, B. Meyer, and C. Hopf, Sensitive, robust and automated protein analysis of cell differentiation and of primary human blood cells by intact cell MALDI mass spectrometry biotyping, Analytical and Bioanalytical Chemistry, vol.85, issue.3, pp.2277-86, 2012.
DOI : 10.1172/JCI114496

R. Ouedraogo, A. Daumas, E. Ghigo, C. Capo, J. Mege et al., Whole-cell MALDI-TOF MS: A new tool to assess the multifaceted activation of macrophages, Journal of Proteomics, vol.75, issue.18, pp.5523-5555, 2012.
DOI : 10.1016/j.jprot.2012.07.046

D. Portevin, V. Pflüger, P. Otieno, R. Brunisholz, G. Vogel et al., Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands, BMC Biotechnology, vol.144, issue.2, p.24, 2015.
DOI : 10.1111/imm.12394

URL : https://bmcbiotechnol.biomedcentral.com/track/pdf/10.1186/s12896-015-0140-1?site=bmcbiotechnol.biomedcentral.com

V. Mehraj, J. Textoris, B. Amara, A. Ghigo, E. Raoult et al., Monocyte Responses in the Context of Q Fever: From a Static Polarized Model to a Kinetic Model of Activation, The Journal of Infectious Diseases, vol.984, issue.6, pp.942-51, 2013.
DOI : 10.1007/978-94-007-4315-1_14

R. Ouedraogo, A. Daumas, C. Capo, J. Mege, and J. Textoris, Whole-cell MALDI-TOF Mass Spectrometry is an Accurate and Rapid Method to Analyze Different Modes of Macrophage Activation, Journal of Visualized Experiments, vol.26, issue.82, p.50926, 2013.
DOI : 10.3791/50926

URL : http://europepmc.org/articles/pmc4107981?pdf=render

F. Biteker, S. Çaylak, and H. Sözen, Biomarkers in sepsis, The American Journal of Emergency Medicine, vol.34, issue.5, pp.924-929, 2016.
DOI : 10.1016/j.ajem.2016.02.028

B. Biron, A. Ayala, and J. Lomas-neira, Biomarkers for Sepsis: What is and What Might Be?, Biomarker Insights, vol.10, issue.4, pp.7-17, 2015.
DOI : 10.4137/BMI.S29519

URL : http://insights.sagepub.com/redirect_file.php?fileId=6788&filename=5075-BMI-Biomarkers-for-Sepsis:-What-Is-and-What-Might-Be?.pdf&fileType=pdf

R. Markwart, S. Condotta, R. Requardt, F. Borken, K. Schubert et al., Immunosuppression after Sepsis: Systemic Inflammation and Sepsis Induce a Loss of Na??ve T-Cells but No Enduring Cell-Autonomous Defects in T-Cell Function, PLoS ONE, vol.78, issue.5, p.115094, 2014.
DOI : 10.1371/journal.pone.0115094.s006

M. Engel, F. Paling, A. Hoepelman, V. Van-der-meer, and J. Oosterheert, Evaluating the evidence for the implementation of C-reactive protein measurement in adult patients with suspected lower respiratory tract infection in primary care: a systematic review, Family Practice, vol.14, issue.1, pp.383-93, 2012.
DOI : 10.1186/cc8155

R. Hotchkiss and I. Karl, The Pathophysiology and Treatment of Sepsis, New England Journal of Medicine, vol.348, issue.2, pp.138-50, 2003.
DOI : 10.1056/NEJMra021333

Q. Peng, O. Loughin, J. Humphrey, and M. , DOK3 Negatively Regulates LPS Responses and Endotoxin Tolerance, PLoS ONE, vol.101, issue.6, p.39967, 2012.
DOI : 10.1371/journal.pone.0039967.g009

URL : https://doi.org/10.1371/journal.pone.0039967