M. Deng, S. G. Kumbar, K. W. Lo, B. D. Ulery, and C. T. Laurencin, Novel polymerceramics for bone repair and regeneration, Recent Pat, Biomed. Eng, vol.4, pp.141-152, 2011.

S. V. Dorozhkin and C. Orthophosphates, Calcium orthophosphates, Journal of Materials Science, vol.27, issue.332, pp.1061-1095, 2007.
DOI : 10.1002/jbm.a.31096

L. J. Wang and G. H. Nancollas, Calcium Orthophosphates: Crystallization and Dissolution, Chemical Reviews, vol.108, issue.11, pp.4628-4669, 2008.
DOI : 10.1021/cr0782574

S. V. Dorozhkin, Multiphasic calcium orthophosphate (CaPO 4 ) bioceramics and their biomedical applications, Ceramics International, vol.42, issue.6, pp.6529-6554, 2016.
DOI : 10.1016/j.ceramint.2016.01.062

J. Bouler, P. Pilet, O. Gauthier, and E. Verron, Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response, Acta Biomaterialia, vol.53, pp.15-53
DOI : 10.1016/j.actbio.2017.01.076

URL : https://hal.archives-ouvertes.fr/inserm-01856253

R. Legeros, A. Chohayeb, and A. Shulman, Apatitic calcium phosphates: possible restorative materials, J. Dent. Res.Special Issue), vol.343, p.61, 1982.

W. E. Brown and L. C. Chow, A new calcium phosphate setting cement, J. Dent. Res, pp.62-672, 1983.

M. Bohner, U. Gbureck, and J. E. Barralet, Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment, Biomaterials, vol.26, issue.33, pp.6423-6429, 2005.
DOI : 10.1016/j.biomaterials.2005.03.049

M. Julien, I. Khairoun, R. Z. Legeros, S. Delplace, P. Pilet et al., Physico-chemical???mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates, Biomaterials, vol.28, issue.6, pp.956-965, 2007.
DOI : 10.1016/j.biomaterials.2006.10.018

URL : https://hal.archives-ouvertes.fr/inserm-00170245

L. Ambrosio, V. Guarino, V. Sanginario, P. Torricelli, M. Fini et al., Injectable calcium-phosphate-based composites for skeletal bone treatments, Biomedical Materials, vol.7, issue.2, pp.1748-6041, 2012.
DOI : 10.1088/1748-6041/7/2/024113

S. V. Dorozhkin, Self-Setting Calcium Orthophosphate Formulations, Journal of Functional Biomaterials, vol.164, issue.494, pp.209-311, 2013.
DOI : 10.1007/s10856-006-0439-5

J. Zhang, W. Liu, V. Schnitzler, F. Tancret, and J. Bouler, Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties, Acta Biomaterialia, vol.10, issue.3, pp.10-1035, 2014.
DOI : 10.1016/j.actbio.2013.11.001

URL : https://hal.archives-ouvertes.fr/hal-00988847

N. J. Gorst, Y. Perrie, U. Gbureck, A. L. Hutton, M. P. Hofmann et al., Effects of fibre reinforcement on the mechanical properties of brushite cement, Acta Biomaterialia, vol.2, issue.1, pp.95-102, 2006.
DOI : 10.1016/j.actbio.2005.09.001

W. Habraken, J. G. Wolke, A. G. Mikos, and J. A. Jansen, Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics, Journal of Biomaterials Science, Polymer Edition, vol.20, issue.9, pp.1057-1074, 2006.
DOI : 10.1023/A:1024466407849

D. P. Link, J. Van-den-dolder, W. Jurgens, J. G. Wolke, and J. A. Jansen, Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles, Biomaterials, vol.27, issue.28, pp.4941-4947, 2006.
DOI : 10.1016/j.biomaterials.2006.05.022

H. H. Xu and J. B. Quinn, Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity, Biomaterials, vol.23, issue.1, pp.193-202, 2002.
DOI : 10.1016/S0142-9612(01)00095-3

H. H. Xu and C. G. Simon, Self-hardening calcium phosphate cement-mesh composite: Reinforcement, macropores, and cell response, Journal of Biomedical Materials Research, vol.68, issue.2, pp.267-278, 2004.
DOI : 10.2106/00004623-198668060-00013

H. Liu, H. Li, W. J. Cheng, Y. Yang, M. Y. Zhu et al., Novel injectable calcium phosphate/chitosan composites for bone substitute materials, Acta Biomaterialia, vol.2, issue.5, pp.557-565, 2006.
DOI : 10.1016/j.actbio.2006.03.007

Z. H. Pan, H. P. Cai, P. P. Jiang, and Q. Y. Fan, Properties of a Calcium Phosphate Cement Synergistically Reinforced by Chitosan Fiber and Gelatin, Journal of Polymer Research, vol.25, issue.4, pp.323-327, 2006.
DOI : 10.1021/ma981929v

Z. H. Pan, P. P. Jiang, Q. Y. Fan, H. P. Ma, and . Cai, Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.25, issue.1, pp.246-252, 2007.
DOI : 10.1001/archotol.1991.01870160039005

S. Takagi, L. C. Chow, S. Hirayama, and F. C. Eichmiller, Properties of elastomeric calcium phosphate cement???chitosan composites, Dental Materials, vol.19, issue.8, pp.797-804, 2003.
DOI : 10.1016/S0109-5641(03)00028-9

H. H. Xu and C. G. Simon, Fast setting calcium phosphate???chitosan scaffold: mechanical properties and biocompatibility, Biomaterials, vol.26, issue.12, pp.1337-1348, 2005.
DOI : 10.1016/j.biomaterials.2004.04.043

A. Bigi, B. Bracci, and S. Panzavolta, Effect of added gelatin on the properties of calcium phosphate cement, Biomaterials, vol.25, issue.14, pp.2893-2899, 2004.
DOI : 10.1016/j.biomaterials.2003.09.059

W. Habraken, L. T. De-jonge, J. G. Wolke, L. Yubao, A. G. Mikos et al., Introduction of gelatin microspheres into an injectable calcium phosphate cement, Journal of Biomedical Materials Research Part A, vol.79, issue.3, pp.643-655, 2008.
DOI : 10.1177/26.5.96177

URL : http://repository.ubn.ru.nl/bitstream/2066/69605/1/69605.pdf

Y. Miyamoto, K. Ishikawa, M. Takechi, T. Toh, T. Yuasa et al., Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases, Biomaterials, vol.19, issue.7-9, pp.707-715, 1998.
DOI : 10.1016/S0142-9612(97)00186-5

M. Otsuka, T. Kuninaga, K. Otsuka, and W. I. Higuchi, Effect of nanostructure on biodegradation behaviors of self-setting apatite/collagen composite cements containing vitamin K2 in rats, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.218, issue.1, pp.176-184, 2006.
DOI : 10.1002/jbm.b.30528

J. P. Lin, S. N. Zhang, T. Chen, C. S. Liu, S. L. Lin et al., Calcium phosphate cement reinforced by polypeptide copolymers, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.18, issue.2, pp.76-432, 2006.
DOI : 10.1177/00220345900690121201

W. Liu, J. Zhang, P. Weiss, F. Tancret, and J. Bouler, The influence of different cellulose ethers on both the handling and mechanical properties of calcium phosphate cements for bone substitution, Acta Biomaterialia, vol.9, issue.3, pp.5740-5750, 2013.
DOI : 10.1016/j.actbio.2012.11.020

URL : https://hal.archives-ouvertes.fr/hal-00982034

W. Liu, J. Zhang, G. Rethore, K. Khairoun, P. Pilet et al., A novel injectable, cohesive and toughened Si-HPMC (silanizedhydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution, Acta Biomater, pp.10-3335, 2014.
DOI : 10.1016/j.actbio.2014.03.009

URL : https://hal.archives-ouvertes.fr/hal-01205937

J. Zhang, W. Liu, O. Gauthier, S. Sourice, P. Pilet et al., A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution, Acta Biomaterialia, vol.31, pp.326-338, 2016.
DOI : 10.1016/j.actbio.2015.11.055

URL : https://hal.archives-ouvertes.fr/hal-01723572

J. M. Kanczler and R. O. Oreffo, Osteogenesis and angiogenesis: The potential for engineering bone, European Cells and Materials, vol.15, pp.100-114, 2008.
DOI : 10.22203/eCM.v015a08

URL : http://doi.org/10.22203/ecm.v015a08

H. Begam, S. K. Nandi, B. Kundu, and A. Chanda, Strategies for delivering bone morphogenetic protein for bone healing, Materials Science and Engineering: C, vol.70, pp.856-869, 2017.
DOI : 10.1016/j.msec.2016.09.074

E. Verron, I. Khairoun, J. Guicheux, and J. Bouler, Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discovery Today, vol.15, issue.13-14, pp.547-552, 2010.
DOI : 10.1016/j.drudis.2010.05.003

URL : https://hal.archives-ouvertes.fr/hal-02142555

T. Balaguer, F. Boukhechba, A. Clavé, S. Bouvet-gerbettaz, C. Trojani et al., Biphasic Calcium Phosphate Microparticles for Bone Formation: Benefits of Combination with Blood Clot, Tissue Engineering Part A, vol.16, issue.11, pp.3495-3505, 2010.
DOI : 10.1089/ten.tea.2010.0227

URL : https://hal.archives-ouvertes.fr/hal-02109580

M. A. Lopez-heredia, J. Pattipeilohy, S. Hsu, M. Grykien, B. Van-der-weijden et al., Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cementsfibrin glue composites for bone substitute applications, J. Biomed. Mater. Res. A, vol.101, pp.478-490, 2013.

C. L. Ko, W. C. Chen, J. C. Chen, Y. H. Wang, C. J. Shih et al., Properties of osteoconductive biomaterials: Calcium phosphate cement with different ratios of platelet-rich plasma as identifiers, Materials Science and Engineering: C, vol.33, issue.6, pp.3537-3544, 2013.
DOI : 10.1016/j.msec.2013.04.042

R. Harrison, Z. K. Criss, L. Feller, S. P. Modi, J. G. Hardy et al., Mechanical properties of ??-tricalcium phosphate-based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.221, issue.1, pp.149-157, 2016.
DOI : 10.1243/09544119JEIM235

Y. Musha, T. Umeda, S. Yoshizawa, T. Shigemitsu, K. Mizutani et al., Effects of blood on bone cement made of calcium phosphate: Problems and advantages, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.20, issue.1, pp.92-95, 2010.
DOI : 10.2106/00004623-200300003-00013

C. Despas, V. Schnitzler, P. Janvier, F. Fayon, D. Massiot et al., High-frequency impedance measurement as a relevant tool for monitoring the apatitic cement setting reaction, Acta Biomaterialia, vol.10, issue.2, pp.10-940, 2014.
DOI : 10.1016/j.actbio.2013.10.019

J. M. Thiebaut, G. Roussy, K. Chlihi, and J. Bessiere, Dielectric study of the activation of blende with cupric ions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.262, issue.1-2, pp.131-1440022, 1989.
DOI : 10.1016/0022-0728(89)80017-8

B. M. Fung, A. K. Khitrin, and K. Ermolaev, An Improved Broadband Decoupling Sequence for Liquid Crystals and Solids, Journal of Magnetic Resonance, vol.142, issue.1, pp.97-101, 2000.
DOI : 10.1006/jmre.1999.1896

G. Metz, X. L. Wu, and S. O. Smith, Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR, Journal of Magnetic Resonance, Series A, vol.110, issue.2, pp.219-227, 1994.
DOI : 10.1006/jmra.1994.1208

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calve et al., Hoatson, Modelling one-and two-dimensional solid-state NMR spectra, Magn. Reson. Chem, pp.40-70, 2002.

O. Gauthier, R. Müller, D. Von-stechow, B. Lamy, P. Weiss et al., In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study, Biomaterials, vol.26, issue.27, pp.5444-5453, 2005.
DOI : 10.1016/j.biomaterials.2005.01.072

E. Verron, O. Gauthier, P. Janvier, P. Pilet, J. Lesoeur et al.,

. Bouler, In vivo bone augmentation in an osteoporotic environment using bisphosphonate-loaded calcium deficient apatite, Biomaterials, vol.31, pp.7776-7784, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02142554

I. Khairoun, M. G. Boltong, F. C. Driessens, and J. A. , Some factors controlling the injectability of calcium phosphate bone cements, Journal of Materials Science Materials in Medicine, vol.9, issue.8, pp.425-428, 1998.
DOI : 10.1023/A:1008811215655

M. Bohner and G. Baroud, Injectability of calcium phosphate pastes, Biomaterials, vol.26, issue.13, p.1553, 2005.
DOI : 10.1016/j.biomaterials.2004.05.010

M. P. Ginebra, A. Rilliard, E. Fernandez, C. Elvira, J. San-roman et al., Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug, Journal of Biomedical Materials Research, vol.7, issue.1, pp.113-118, 2001.
DOI : 10.1007/BF00123406

C. Mellier, F. Fayon, F. Boukhechba, E. Verron, M. Leferrec et al., Design and properties of novel gallium-doped injectable apatitic cements, Acta Biomaterialia, vol.24, pp.322-332, 2015.
DOI : 10.1016/j.actbio.2015.05.027

URL : https://hal.archives-ouvertes.fr/hal-01391170

C. Combes and C. Rey, Adsorption of proteins and calcium phosphate materials bioactivity, Biomaterials, vol.23, issue.13, pp.2817-2823, 2002.
DOI : 10.1016/S0142-9612(02)00073-X

W. E. Brown, J. R. Lehr, J. P. Smith, and A. W. Frazier, CRYSTALLOGRAPHY OF OCTACALCIUM PHOSPHATE, Journal of the American Chemical Society, vol.79, issue.19, pp.5318-5319, 1957.
DOI : 10.1021/ja01576a068

W. E. Brown, J. P. Smith, A. W. Frazier, and J. R. Lehr, Octacalcium Phosphate and Hydroxyapatite: Crystallographic and Chemical Relations between Octacalcium Phosphate and Hydroxyapatite, Nature, vol.171, issue.4859, pp.1050-1055, 1962.
DOI : 10.1021/ja01616a009

S. V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials, vol.31, issue.7, pp.1465-1485, 2010.
DOI : 10.1016/j.biomaterials.2009.11.050

M. S. Johnsson and G. H. Nancollas, The Role of Brushite and Octacalcium Phosphate in Apatite Formation, Critical Reviews in Oral Biology & Medicine, vol.3, issue.1, pp.61-82, 1992.
DOI : 10.1016/0021-9797(90)90286-W