C. Laurencin, Y. Khan, and S. F. El-amin, Bone graft substitutes, Expert Review of Medical Devices, vol.27, issue.1, pp.49-57, 2006.
DOI : 10.1002/jbm.820270716

T. Lerner, V. Bullmann, T. L. Schulte, M. Schneider, and U. Liljenqvist, A level-1 pilot study to evaluate of ultraporous ??-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis, European Spine Journal, vol.21, issue.Suppl, pp.170-179, 2009.
DOI : 10.1097/01241398-199107000-00008

F. Gouin, F. Yaouanc, D. Waast, B. Melchior, J. Delecrin et al., Open wedge high tibial osteotomies: Calcium-phosphate ceramic spacer versus autologous bonegraft, Orthopaedics & Traumatology: Surgery & Research, vol.96, issue.6, pp.637-645, 2010.
DOI : 10.1016/j.otsr.2010.03.022

URL : https://doi.org/10.1016/j.otsr.2010.03.022

D. Y. Cho, W. Y. Lee, P. C. Sheu, and C. C. Chen, Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis, Surgical Neurology, vol.63, issue.6, pp.497-503, 2005.
DOI : 10.1016/j.surneu.2004.10.016

L. Y. Dai and L. S. Jiang, Single-Level Instrumented Posterolateral Fusion of Lumbar Spine With ??-Tricalcium Phosphate Versus Autograft, Spine, vol.33, issue.12, pp.1299-1304, 1976.
DOI : 10.1097/BRS.0b013e3181732a8e

R. Cavagna, G. Daculsi, and J. M. Bouler, Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion, J. Long Term Eff. Med. Implants, vol.9, issue.4, pp.403-412, 1999.

E. B. Nery, K. K. Lee, S. Czajkowski, J. J. Dooner, M. Duggan et al., A Veterans Administration Cooperative Study of Biphasic Calcium Phosphate Ceramic in Periodontal Osseous Defects, Journal of Periodontology, vol.67, issue.3, pp.61-737, 1990.
DOI : 10.1902/jop.1986.57.4.205

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Bone substitutes: An update, Injury, vol.36, issue.3, pp.20-27, 2005.
DOI : 10.1016/j.injury.2005.07.029

L. G. Zhang, A. Khademhosseini, and T. Webster, Tissue and Organ Regeneration: Advances in Micro-and Nanotechnology, 2014.
DOI : 10.1201/b15595

R. Z. Legeros, Materials for Bone Repair, Augmentation, and Implant Coatings, Biomechanics in Orthopedics, pp.147-174, 1992.
DOI : 10.1007/978-4-431-68216-5_8

R. , Y. Basha, T. S. Sampath-kumar, and M. Doble, Design of biocomposite materials for bone tissue regeneration, Mater. Sci. Eng. C Mater. Biol. Appl, vol.57, pp.452-463, 2015.

E. Garcia-gareta, M. J. Coathup, and G. W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone, vol.81, pp.112-121, 2015.
DOI : 10.1016/j.bone.2015.07.007

M. Jarcho, Calcium Phosphate Ceramics as Hard Tissue Prosthetics, Clinical Orthopaedics and Related Research, vol.&NA;, issue.157, pp.259-279, 1981.
DOI : 10.1097/00003086-198106000-00037

R. Z. Legeros, Calcium phosphate in oral biology and medicine, Monogr. Oral Sci, vol.15, 1991.

H. Newesely and E. Hayek, ??ber die Basizit??t der Knochenmineralien, Experientia, vol.9, issue.9, pp.459-460, 1963.
DOI : 10.1007/BF02150645

J. M. Bouler, R. Z. Legeros, and G. Daculsi, Biphasic calcium phosphates: Influence of three synthesis parameters on the HA/?-TCP ratio, Journal of Biomedical Materials Research, vol.46, issue.4, pp.680-684, 2000.
DOI : 10.1007/BF02555820

J. M. Bouler, M. Trecant, J. Delecrin, J. Royer, N. Passuti et al., Macroporous biphasic calcium phosphate ceramics: Influence of five synthesis parameters on compressive strength, Journal of Biomedical Materials Research, vol.65, issue.2, pp.603-609, 1996.
DOI : 10.1016/0267-6605(94)90051-5

R. Z. Legeros, Calcium Phosphate Materials in Restorative Dentistry: a Review, Advances in Dental Research, vol.10, issue.472, pp.164-180, 1988.
DOI : 10.1016/S0099-2399(84)80059-X

G. Daculsi, J. M. Bouler, and R. Z. Legeros, Adaptive Crystal Formation in Normal and Pathological Calcifications in Synthetic Calcium Phosphate and Related Biomaterials, Int. Rev. Cytol, vol.172, pp.129-191, 1997.
DOI : 10.1016/S0074-7696(08)62360-8

D. Anuta, D. Richardson, D. Moore, M. Chapman, and D. Manske, Biphasic hydroxyapatite/beta-tricalcium phosphate granules bound in polymerized methyl methacrylate: bone substitute studies, Transactions of the Annual Meeting of the Society for Biomaterials in Conjunction with the Interna Evaluation of a new biphasic calcium phosphate ceramic for use in grafting long bone diaphyseal defects, Transactions of the Annual Meeting of the Society for Biomaterials in Conjunction with the Interna, 1985.

E. B. Nery, K. L. Lynch, W. M. Hirthe, and K. H. Mueller, Bioceramic Implants in Surgically Produced Infrabony Defects, Journal of Periodontology, vol.164, issue.6, pp.328-347, 1975.
DOI : 10.1016/S0300-9785(74)80020-7

R. F. Ellinger, E. B. Nery, and K. L. Lynch, Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report, Int. J. Periodontics Restorative Dent, vol.6, issue.3, pp.22-33, 1986.

C. Lindgren, A. Mordenfeld, C. B. Johansson, and M. Hallman, A 3-year clinical follow-up of implants placed in two different biomaterials used for sinus augmentation, Int. J. Oral Maxillofac. Implants, vol.27, issue.5, pp.1151-1162, 2012.

J. Delecrin, S. Takahashi, F. Gouin, and N. Passuti, A Synthetic Porous Ceramic as a Bone Graft Substitute in the Surgical Management of Scoliosis, Spine, vol.25, issue.5, pp.563-569, 1976.
DOI : 10.1097/00007632-200003010-00006

N. Passuti, G. Daculsi, J. M. Rogez, S. Martin, and J. V. Bainvel, Macroporous Calcium Phosphate Ceramic Performance in Human Spine Fusion, Clinical Orthopaedics and Related Research, vol.&NA;, issue.248, pp.169-176, 1989.
DOI : 10.1097/00003086-198911000-00027

A. Ransford, T. Morley, M. Edgar, P. Webb, N. Passuti et al., Synthetic porous ceramic compared with autograft in scoliosis surgery: A prospective, randomised study of 341 patients, The Journal of Bone and Joint Surgery, vol.80, issue.1, pp.13-18, 1998.
DOI : 10.1302/0301-620X.80B1.7276

F. Monchau, A. Lefevre, M. Descamps, A. Belquin-myrdycz, P. Laffargue et al., In vitro studies of human and rat osteoclast activity on hydroxyapatite, beta-tricalcium phosphate, calcium carbonate, Biomol. Eng, vol.19, pp.2-6, 2002.

R. Detsch, H. Mayr, and G. Ziegler, Formation of osteoclast-like cells on HA and TCP ceramics, Acta Biomaterialia, vol.4, issue.1, pp.139-148, 2008.
DOI : 10.1016/j.actbio.2007.03.014

S. Yamada, D. Heymann, J. M. Bouler, and G. Daculsi, Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/??-tricalcium phosphate ratios, Biomaterials, vol.18, issue.15, pp.1037-1041, 1997.
DOI : 10.1016/S0142-9612(97)00036-7

URL : https://hal.archives-ouvertes.fr/hal-02140669

Z. Badran, P. Pilet, E. Verron, J. M. Bouler, P. Weiss et al., Assay of in vitro osteoclast activity on dentine, and synthetic calcium phosphate bone substitutes, Journal of Materials Science: Materials in Medicine, vol.274, issue.33, pp.797-803, 2012.
DOI : 10.1074/jbc.274.33.22907

URL : https://hal.archives-ouvertes.fr/hal-02140542

S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe et al., The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, vol.26, issue.23, pp.4847-4855, 2005.
DOI : 10.1016/j.biomaterials.2005.01.006

I. Titorencu, V. Jinga, E. Constantinescu, A. Gafencu, C. Ciohodaru et al., Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal cells, Cytotherapy, vol.9, issue.7, pp.682-696, 2007.
DOI : 10.1080/14653240701561329

S. Khoshniat, A. Bourgine, M. Julien, P. Weiss, J. Guicheux et al., The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals, Cellular and Molecular Life Sciences, vol.340, issue.Suppl 1, pp.205-218, 2011.
DOI : 10.1093/oxfordjournals.ndt.a027665

S. Khoshniat, A. Bourgine, M. Julien, M. Petit, P. Pilet et al., Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium, Bone, vol.48, issue.4, pp.894-902, 2011.
DOI : 10.1016/j.bone.2010.12.002

R. W. Nilen and P. W. Richter, The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics, Journal of Materials Science: Materials in Medicine, vol.165, issue.747, pp.1693-1702, 2008.
DOI : 10.1016/j.scriptamat.2005.07.037

M. Bohner, Y. Loosli, G. Baroud, and D. Lacroix, Commentary: Deciphering the link between architecture and biological response of a bone graft substitute, Acta Biomaterialia, vol.7, issue.2, pp.478-484, 2011.
DOI : 10.1016/j.actbio.2010.08.008

P. S. Eggli, W. Muller, and R. K. Schenk, Porous Hydroxyapatite and Tricalcium Phosphate Cylinders with Two Different Pore Size Ranges Implanted in the Cancellous Bone of Rabbits, Clinical Orthopaedics and Related Research, vol.&NA;, issue.232, pp.127-138, 1988.
DOI : 10.1097/00003086-198807000-00017

B. Annaz, K. A. Hing, M. Kayser, T. Buckland, and L. D. Silvio, Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study, Journal of Microscopy, vol.215, issue.1, pp.100-110, 2004.
DOI : 10.1111/j.0022-2720.2004.01354.x

M. Okumura, H. Ohgushi, Y. Dohi, T. Katuda, S. Tamai et al., Osteoblastic phenotype expression on the surface of hydroxyapatite ceramics, Journal of Biomedical Materials Research, vol.30, issue.1, pp.122-129, 1997.
DOI : 10.1016/B978-0-08-042144-5.50056-X

A. Okumura, M. Goto, T. Goto, M. Yoshinari, S. Masuko et al., Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2), Biomaterials, vol.22, issue.16, pp.2263-2271, 2001.
DOI : 10.1016/S0142-9612(00)00415-4

M. Rouahi, O. Gallet, E. Champion, J. Dentzer, P. Hardouin et al., Influence of hydroxyapatite microstructure on human bone cell response, Journal of Biomedical Materials Research Part A, vol.16, issue.2, pp.222-235, 2006.
DOI : 10.1002/jbm.a.30682

URL : https://hal.archives-ouvertes.fr/hal-00087537

M. Rouahi, E. Champion, P. Hardouin, and K. Anselme, Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials, Biomaterials, vol.27, issue.14, pp.2829-2844, 2006.
DOI : 10.1016/j.biomaterials.2006.01.001

URL : https://hal.archives-ouvertes.fr/hal-00087534

H. Yuan, P. Zou, Z. Yang, X. Zhang, J. D. De-bruijn et al., Bone morphogenetic protein and ceramic-induced osteogenesis, Journal of Materials Science: Materials in Medicine, vol.9, issue.12, pp.717-721, 1998.
DOI : 10.1023/A:1008998817977

J. Isaac, J. C. Hornez, D. Jian, M. Descamps, P. Hardouin et al., Beta-TCP microporosity decreases the viability and osteoblast differentiation of human bone marrow stromal cells, J. Biomed. Mater. Res. A, vol.86, issue.2, pp.386-393, 2008.
DOI : 10.1002/jbm.a.31644

J. Xie, M. J. Baumann, and L. R. Mccabe, Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression, Journal of Biomedical Materials Research, vol.18, issue.1, pp.108-117, 2004.
DOI : 10.1007/s10103-003-0255-9

A. L. Rosa, M. M. Beloti, and R. Van-noort, Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography, Dental Materials, vol.19, issue.8, pp.768-772, 2003.
DOI : 10.1016/S0109-5641(03)00024-1

C. S. Adams, K. Mansfield, R. L. Perlot, and I. M. Shapiro, Matrix Regulation of Skeletal Cell Apoptosis, Journal of Biological Chemistry, vol.38, issue.23, pp.20316-20322, 2001.
DOI : 10.1002/(SICI)1097-4636(19990615)45:4<311::AID-JBM5>3.0.CO;2-9

URL : http://www.jbc.org/content/276/23/20316.full.pdf

H. Yang, G. Curinga, and C. M. Giachelli, Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro11See Editorial by Towler, p. 2467., Kidney International, vol.66, issue.6, pp.2293-2299, 2004.
DOI : 10.1111/j.1523-1755.2004.66015.x

URL : https://doi.org/10.1111/j.1523-1755.2004.66015.x

G. R. Beck-jr, E. Moran, and N. Knecht, Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2, Experimental Cell Research, vol.288, issue.2, pp.288-300, 2003.
DOI : 10.1016/S0014-4827(03)00213-1

L. E. Rustom, T. Boudou, S. Lou, I. Pignot-paintrand, B. W. Nemke et al., Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds, Acta Biomaterialia, vol.44, issue.44, pp.144-154, 2016.
DOI : 10.1016/j.actbio.2016.08.025

URL : https://hal.archives-ouvertes.fr/hal-01465592

S. K. Lan-levengood, S. J. Polak, M. B. Wheeler, A. J. Maki, S. G. Clark et al., Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration, Biomaterials, vol.31, issue.13, pp.3552-3563, 2010.
DOI : 10.1016/j.biomaterials.2010.01.052

O. Chan, M. J. Coathup, A. Nesbitt, C. Y. Ho, K. A. Hing et al., The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials, Acta Biomaterialia, vol.8, issue.7, pp.2788-2794, 2012.
DOI : 10.1016/j.actbio.2012.03.038

A. Bernstein, P. Niemeyer, G. Salzmann, N. P. Südkamp, R. Hube et al., Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results, Acta Biomaterialia, vol.9, issue.7, pp.7490-7505, 2013.
DOI : 10.1016/j.actbio.2013.03.021

M. J. Coathup, K. A. Hing, S. Samizadeh, O. Chan, Y. S. Fang et al., Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction, Journal of Biomedical Materials Research Part A, vol.57, issue.6, pp.1550-1555, 2012.
DOI : 10.1002/1097-4636(200111)57:2<258::AID-JBM1166>3.0.CO;2-R

S. J. Polak, L. E. Rustom, G. M. Genin, M. Talcott, and A. J. Wagoner-johnson, A mechanism for effective cell-seeding in rigid, microporous substrates, Acta Biomaterialia, vol.9, issue.8, pp.7977-7986, 2013.
DOI : 10.1016/j.actbio.2013.04.040

C. P. Klein, K. De-groot, F. C. Driessens, and H. B. , A comparative study of different ??-whiUockite ceramics in rabbit cortical bone with regard to their biodegradation behaviour, Biomaterials, vol.7, issue.2, pp.144-146, 1986.
DOI : 10.1016/0142-9612(86)90072-4

H. Lapczyna, L. Galea, S. Wüst, M. Bohner, S. Jerban et al., Effect of grain size and microporosity on the in vivo behaviour of ??-tricalcium phosphate scaffolds, European Cells and Materials, vol.28, pp.299-319, 2014.
DOI : 10.22203/eCM.v028a21

A. Bignon, J. Chouteau, J. Chevalier, G. Fantozzi, J. P. Carret et al., Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response, Journal of Materials Science: Materials in Medicine, vol.14, issue.12, pp.14-1089, 2003.
DOI : 10.1023/B:JMSM.0000004006.90399.b4

URL : https://hal.archives-ouvertes.fr/hal-00475144

J. Chouteau, A. Bignon, P. Chavassieux, J. Chevalier, M. Melin et al., Cellular culture of osteoblasts and fibroblasts on porous calcium-phosphate bone substitutes, Rev. Chir. Orthop. Reparatrice Appar. Mot, vol.89, issue.1, pp.44-52, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01670893

D. Heymann, J. Guicheux, and A. V. Rousselle, Ultrastructural evidence in vitro of osteoclast-induced degradation of calcium phosphate ceramic by simultaneous resorption and phagocytosis mechanisms, Histol. Histopathol, vol.16, issue.1, pp.37-44, 2001.

F. Pecqueux, F. Tancret, N. Payraudeau, and J. M. Bouler, Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: Modelling and experiment, Journal of the European Ceramic Society, vol.30, issue.4, pp.30-819, 2010.
DOI : 10.1016/j.jeurceramsoc.2009.09.017

J. Toquet, R. Rohanizadeh, J. Guicheux, S. Couillaud, N. Passuti et al., Osteogenic potentialin vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic, Journal of Biomedical Materials Research, vol.13, issue.1, pp.98-108, 1999.
DOI : 10.1902/jop.1992.63.9.729

S. T. Abdulqader, I. A. Rahman, K. P. Thirumulu, H. Ismail, and Z. Mahmood, Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells, Journal of Biomaterials Applications, vol.21, issue.9, pp.1300-1311, 2016.
DOI : 10.1016/j.joen.2011.03.030

X. Tang, L. Mao, J. Liu, Z. Yang, W. Zhang et al., Fang, Fabrication, characterization and cellular biocompatibility of porous biphasic calcium phosphate bioceramic scaffolds with different pore sizes, Ceram. Int, pp.42-15311, 2016.
DOI : 10.1016/j.ceramint.2016.06.172

O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet, and G. Daculsi, Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth, Biomaterials, vol.19, issue.1-3, pp.1-3, 1998.
DOI : 10.1016/S0142-9612(97)00180-4

O. Gauthier, J. M. Bouler, R. Z. Legeros, E. Agado, P. Pilet et al., Elaboration conditions influence physicochemical properties: an in vivo bioactivity of macroporous biphasic calcium phosphate ceramics, J. Mater. Sci. ? Mater

. Med, , pp.199-204, 1999.

L. C. Gerstenfeld, T. J. Cho, T. Kon, T. Aizawa, J. Cruceta et al., Impaired Intramembranous Bone Formation during Bone Repair in the Absence of Tumor Necrosis Factor-Alpha Signaling, Cells Tissues Organs, vol.169, issue.3, pp.285-294, 2001.
DOI : 10.1159/000047893

J. Lu, M. C. Blary, S. Vavasseur, M. Descamps, K. Anselme et al., Relationship between bioceramics sintering and micro-particles-induced cellular damages, Journal of Materials Science: Materials in Medicine, vol.15, issue.4, pp.361-365, 2004.
DOI : 10.1023/B:JMSM.0000021102.68509.65

B. Fellah, B. Delorme, J. Sohier, D. Magne, P. Hardouin et al., Macrophage and osteoblast responses to biphasic calcium phosphate microparticles, Journal of Biomedical Materials Research Part A, vol.30, issue.4, pp.1588-1595, 2010.
DOI : 10.1002/jbm.a.30712

S. N. Silva, M. M. Pereira, A. M. Goes, and M. F. Leite, Effect of biphasic calcium phosphate on human macrophage functions in vitro, J. Biomed. Mater. Res. A, vol.65, issue.4, pp.475-481, 2003.

L. Saldana, S. Sanchez-salcedo, I. Izquierdo-barba, F. Bensiamar, L. Munuera et al., Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells, Acta Biomaterialia, vol.5, issue.4, pp.1294-1305, 2009.
DOI : 10.1016/j.actbio.2008.11.022

T. Cordonnier, P. Layrolle, J. Gaillard, A. Langonne, L. Sensebe et al., 3D environment on human mesenchymal stem cells differentiation for bone tissue engineering, Journal of Materials Science: Materials in Medicine, vol.85, issue.Pt 1, pp.981-987, 2010.
DOI : 10.1042/bj3020175

O. Malard, J. M. Bouler, J. Guicheux, D. Heymann, P. Pilet et al., Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: Preliminaryin vitro andin vivo study, Journal of Biomedical Materials Research, vol.18, issue.1, pp.103-111, 1999.
DOI : 10.1016/B978-0-08-042144-5.50051-0

O. Gauthier, J. M. Bouler, P. Weiss, J. Bosco, G. Daculsi et al., Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes, Journal of Biomedical Materials Research, vol.8, issue.1, pp.28-35, 1999.
DOI : 10.1023/A:1018519419539

URL : https://hal.archives-ouvertes.fr/hal-02140657

O. Gauthier, E. Goyenvalle, J. M. Bouler, G. Guicheux, P. Pilet et al., Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone, Journal of Materials Science: Materials in Medicine, vol.12, issue.5, pp.385-390, 2001.
DOI : 10.1023/A:1011284517429

URL : https://hal.archives-ouvertes.fr/hal-02140650

O. Gauthier, J. M. Bouler, P. Weiss, J. Bosco, E. Aguado et al., Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution, Bone, vol.25, issue.2, pp.71-74, 1999.
DOI : 10.1016/S8756-3282(99)00137-4

URL : https://hal.archives-ouvertes.fr/hal-02140659

D. Boix, P. Weiss, O. Gauthier, J. Guicheux, J. M. Bouler et al., Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: A study in dog, Journal of Materials Science: Materials in Medicine, vol.42, issue.11, pp.17-1145, 2006.
DOI : 10.1902/jop.1998.69.9.982

URL : https://hal.archives-ouvertes.fr/inserm-00176538

F. Bodic, Y. Amouriq, O. Gauthier, M. Gayet-delacroix, J. M. Bouler et al., Computed tomography assessment of alveolar filling with an injectable bone substitute, J. Mater. Sci. ? Mater. Med, pp.13-953, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02140646

D. Boix, O. Gauthier, J. Guicheux, P. Pilet, P. Weiss et al., Alveolar Bone Regeneration for Immediate Implant Placement Using an Injectable Bone Substitute: An Experimental Study in Dogs, Journal of Periodontology, vol.14, issue.5, pp.663-671, 2004.
DOI : 10.1016/S0278-2391(10)80108-9

URL : https://hal.archives-ouvertes.fr/inserm-00176539

A. Saffarzadeh, O. Gauthier, M. Bilban, M. Bagot-d-'arc, and G. Daculsi, ) with an autograft in sinus lift surgery in sheep, Clinical Oral Implants Research, vol.216, issue.10, pp.1133-1139, 2009.
DOI : 10.1177/000348949210100808

X. Struillou, H. Boutigny, Z. Badran, B. H. Fellah, O. Gauthier et al., Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate, Journal of Materials Science: Materials in Medicine, vol.28, issue.6, pp.1707-1717, 2011.
DOI : 10.1016/j.biomaterials.2006.10.015

T. Albrektsson and C. , Johansson, Osteoinduction, osteoconduction and osseointegration, Eur, Spine J, vol.10, issue.2, pp.96-101, 2001.
DOI : 10.1007/978-3-642-56071-2_3

URL : http://europepmc.org/articles/pmc3611551?pdf=render

A. Dupraz, J. Delecrin, A. Moreau, P. Pilet, and N. Passuti, Long-term bone response to particulate injectable ceramic, Journal of Biomedical Materials Research, vol.15, issue.3, pp.368-375, 1998.
DOI : 10.1902/jop.1984.55.7.406

B. H. Fellah, P. Weiss, O. Gauthier, T. Rouillon, P. Pilet et al., Bone repair using a new injectable self-crosslinkable bone substitute, Journal of Orthopaedic Research, vol.254, issue.4, pp.628-635, 2006.
DOI : 10.1159/000419232

URL : https://hal.archives-ouvertes.fr/inserm-00170238

O. Gauthier, D. Boix, G. Grimandi, E. Aguado, J. M. Bouler et al., A New Injectable Calcium Phosphate Biomaterial for Immediate Bone Filling of Extraction Sockets: A Preliminary Study in Dogs, Journal of Periodontology, vol.3, issue.4, pp.375-383, 1999.
DOI : 10.1007/BF01351842

O. Gauthier, R. Muller, D. Von-stechow, B. Lamy, P. Weiss et al., In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study, Biomaterials, vol.26, issue.27, pp.5444-5453, 2005.
DOI : 10.1016/j.biomaterials.2005.01.072

M. B. Claase, J. D. De-bruijn, D. W. Grijpma, and J. Feijen, Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity, Journal of Materials Science: Materials in Medicine, vol.129, issue.7, pp.1299-1307, 2007.
DOI : 10.1093/oxfordjournals.jbchem.a002828

URL : https://link.springer.com/content/pdf/10.1007%2Fs10856-006-0077-y.pdf

M. I. Alam, I. Asahina, K. Ohmamiuda, K. Takahashi, S. Yokota et al., Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2, Biomaterials, vol.22, issue.12, pp.1643-1651, 2001.
DOI : 10.1016/S0142-9612(00)00322-7

J. L. Linton, B. W. Sohn, J. I. Yook, and R. Z. Le-geros, Effects of Calcium Phosphate Ceramic Bone Graft Materials on Permanent Teeth Eruption in Beagles, The Cleft Palate-Craniofacial Journal, vol.39, issue.2, pp.197-207, 2002.
DOI : 10.1016/0030-4220(93)90193-8

P. Weiss, P. Layrolle, L. P. Clergeau, B. Enckel, P. Pilet et al., The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial, Biomaterials, vol.28, issue.22, pp.3295-3305, 2007.
DOI : 10.1016/j.biomaterials.2007.04.006

URL : https://hal.archives-ouvertes.fr/inserm-00166069

L. Cordaro, D. D. Bosshardt, P. Palattella, W. Rao, G. Serino et al., Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial, Clinical Oral Implants Research, vol.20, issue.(Suppl), pp.796-803, 2008.
DOI : 10.1142/9789814291064_0069

J. W. Frenken, W. F. Bouwman, N. Bravenboer, S. A. Zijderveld, E. A. Schulten et al., Bone Ceramic in a maxillary sinus floor elevation procedure: a clinical, radiological, histological and histomorphometric evaluation with a 6-month healing period, Clinical Oral Implants Research, vol.20, issue.(Suppl.), pp.201-208
DOI : 10.1902/jop.1992.63.9.729

A. Friedmann, M. Dard, B. M. Kleber, J. P. Bernimoulin, and D. D. Bosshardt, Ridge augmentation and maxillary sinus grafting with a biphasic calcium phosphate: histologic and histomorphometric observations, Clinical Oral Implants Research, vol.74, issue.7, pp.708-714, 2009.
DOI : 10.1902/jop.1998.69.5.528

C. Lindgren, M. Hallman, L. Sennerby, and R. Sammons, Back-scattered electron imaging and elemental analysis of retrieved bone tissue following sinus augmentation with deproteinized bovine bone or biphasic calcium phosphate, Clinical Oral Implants Research, vol.78, issue.(S, pp.924-930, 2010.
DOI : 10.1177/000348940411300907

H. P. Yuan, K. Kurashina, J. D. Debruijn, Y. B. Li, K. Degroot et al., A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics, Biomaterials, vol.20, issue.19, pp.1799-1806, 1999.
DOI : 10.1016/S0142-9612(99)00075-7

U. Ripamonti, J. Crooks, L. Khoali, and L. Roden, The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs, Biomaterials, vol.30, issue.7, pp.1428-1439, 2009.
DOI : 10.1016/j.biomaterials.2008.10.065

S. Pollick, E. C. Shors, R. E. Holmes, and R. A. Kraut, Bone formation and implant degradation of coralline porous ceramics placed in bone and ectopic sites, Journal of Oral and Maxillofacial Surgery, vol.53, issue.8, pp.915-922, 1995.
DOI : 10.1016/0278-2391(95)90281-3

U. Ripamonti, Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models, Biomaterials, vol.17, issue.1, pp.31-35, 1996.
DOI : 10.1016/0142-9612(96)80752-6

H. Yuan, J. D. De-bruijn, Y. Li, J. Feng, Z. Yang et al., Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP, Journal of Materials Science: Materials in Medicine, vol.12, issue.1, pp.7-13, 2001.
DOI : 10.1023/A:1026792615665

H. Yuan, J. D. De-bruijn, X. Zhang, C. A. Van-blitterswijk, and K. De-groot, Bone induction by porous glass ceramic made from Bioglass??? (45S5), Bone induction by porous glass ceramic made from Bioglass (45S5), pp.270-276, 2001.
DOI : 10.1002/1097-4636(2001)58:3<270::AID-JBM1016>3.0.CO;2-2

H. Yuan, Y. Li, J. D. De-bruijn, K. De-groot, and X. Zhang, Tissue responses of calcium phosphate cement: a study in dogs, Biomaterials, vol.21, issue.12, pp.1283-1290, 2000.
DOI : 10.1016/S0142-9612(00)00016-8

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. Van-blitterswijk et al., Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants, Biomaterials, vol.29, issue.7, pp.944-953, 2008.
DOI : 10.1016/j.biomaterials.2007.10.023

P. Habibovic, C. M. Van-der-valk, C. A. Van-blitterswijk, K. De-groot, and G. Meijer, Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials, Journal of Materials Science: Materials in Medicine, vol.15, issue.4, pp.373-380, 2004.
DOI : 10.1023/B:JMSM.0000021104.42685.9f

F. Barrere, C. M. Van-der-valk, R. A. Dalmeijer, G. Meijer, C. A. Van-blitterswijk et al., Osteogenecity of octacalcium phosphate coatings applied on porous metal implants, Journal of Biomedical Materials Research Part A, vol.52, issue.4, pp.779-788, 2003.
DOI : 10.1002/1097-4636(20001205)52:3<498::AID-JBM8>3.0.CO;2-P

U. Ripamonti, R. M. Klar, L. F. Renton, and C. Ferretti, Synergistic induction of bone formation by hOP-1, hTGF-??3 and inhibition by zoledronate in macroporous coral-derived hydroxyapatites, Biomaterials, vol.31, issue.25, pp.6400-6410, 2010.
DOI : 10.1016/j.biomaterials.2010.04.037

S. Hasegawa, M. Neo, J. Tamura, S. Fujibayashi, M. Takemoto et al., In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for bone tissue engineering, Journal of Biomedical Materials Research Part A, vol.44, issue.311, pp.930-938, 2007.
DOI : 10.1097/00003086-198310000-00038

D. Barbieri, A. J. Renard, J. D. De-bruijn, and H. Yuan, Heterotopic bone formation by nano-apatite containing poly(D, L-lactide) composites, Eur, Cell Mater, vol.19, pp.252-261, 2010.
DOI : 10.22203/ecm.v019a24

URL : http://doi.org/10.22203/ecm.v019a24

P. Habibovic, H. Yuan, C. M. Van-der-valk, G. Meijer, C. A. Van-blitterswijk et al., 3D microenvironment as essential element for osteoinduction by biomaterials, 3D microenvironment as essential element for osteoinduction by biomaterials, pp.3565-3575, 2005.
DOI : 10.1016/j.biomaterials.2004.09.056

H. Yuan, H. Fernandes, P. Habibovic, J. De-boer, A. M. Barradas et al., Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.31-13614, 2010.
DOI : 10.1177/08959374990130011801

URL : http://www.pnas.org/content/107/31/13614.full.pdf

P. Habibovic, T. M. Sees, M. A. Van-den-doel, C. A. Van-blitterswijk, and K. De-groot, Osteoinduction by biomaterials???Physicochemical and structural influences, Journal of Biomedical Materials Research Part A, vol.8, issue.4, pp.747-762, 2006.
DOI : 10.1016/S0934-8832(11)80115-0

D. Le-nihouannen, G. Daculsi, A. Saffarzadeh, O. Gauthier, S. Delplace et al., Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles, Bone, vol.36, issue.6, pp.1086-1093, 2005.
DOI : 10.1016/j.bone.2005.02.017

B. H. Fellah, O. Gauthier, P. Weiss, D. Chappard, and P. Layrolle, Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model, Biomaterials, vol.29, issue.9, pp.1177-1188, 2008.
DOI : 10.1016/j.biomaterials.2007.11.034

J. R. Werntz, J. M. Lane, A. H. Burstein, R. Justin, R. Klein et al., Qualitative and quantitative analysis of orthotopic bone regeneration by marrow, Journal of Orthopaedic Research, vol.74, issue.1, pp.85-93, 1996.
DOI : 10.3181/00379727-148-38673

M. Á. Brennan, A. Renaud, J. Amiaud, M. T. Rojewski, H. Schrezenmeier et al., Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate, Stem Cell Research & Therapy, vol.5, issue.5, 2014.
DOI : 10.1016/j.biomaterials.2014.08.018

URL : https://hal.archives-ouvertes.fr/inserm-01205389

A. L. Gamblin, M. A. Brennan, A. Renaud, H. Yagita, F. Lézot et al., Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: The local implication of osteoclasts and macrophages, Biomaterials, vol.35, issue.36, pp.9660-9667, 2014.
DOI : 10.1016/j.biomaterials.2014.08.018

URL : https://doi.org/10.1016/j.biomaterials.2014.08.018

]. F. Jegoux, E. Goyenvalle, R. Cognet, O. Malard, F. Moreau et al., Mandibular Segmental Defect Regenerated With Macroporous Biphasic Calcium Phosphate, Collagen Membrane, and Bone Marrow Graft in Dogs, Archives of Otolaryngology???Head & Neck Surgery, vol.136, issue.10, pp.971-978, 2010.
DOI : 10.1001/archoto.2010.173

O. Malard, J. Guicheux, J. M. Bouler, O. Gauthier, C. B. De-montreuil et al., Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study, Bone, vol.36, issue.2, pp.323-330, 2005.
DOI : 10.1016/j.bone.2004.07.018

E. Lerouxel, P. Weiss, B. Giumelli, A. Moreau, P. Pilet et al., Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: An experimental study in rats, Biomaterials, vol.27, issue.26, pp.4566-4572, 2006.
DOI : 10.1016/j.biomaterials.2006.04.027

P. Blery, P. Corre, O. Malard, S. Sourice, P. Pilet et al., Evaluation of new bone formation in irradiated areas using association of mesenchymal stem cells and total fresh bone marrow mixed with calcium phosphate scaffold, Journal of Materials Science: Materials in Medicine, vol.17, issue.12, pp.25-2711, 2014.
DOI : 10.1038/nm.2542

URL : https://hal.archives-ouvertes.fr/inserm-01847140

T. Balaguer, F. Boukhechba, A. Clave, S. Bouvet-gerbettaz, C. Trojani et al., Biphasic Calcium Phosphate Microparticles for Bone Formation: Benefits of Combination with Blood Clot, Tissue Engineering Part A, vol.16, issue.11, pp.3495-3505, 2010.
DOI : 10.1089/ten.tea.2010.0227

URL : https://hal.archives-ouvertes.fr/hal-02109580

F. Espitalier, C. Vinatier, E. Lerouxel, J. Guicheux, P. Pilet et al., A comparison between bone reconstruction following the use of mesenchymal stem cells and total bone marrow in association with calcium phosphate scaffold in irradiated bone, Biomaterials, vol.30, issue.5, pp.763-769, 2009.
DOI : 10.1016/j.biomaterials.2008.10.051

E. Verron, J. M. Bouler, and J. Guicheux, Controlling the biological function of calcium phosphate bone substitutes with drugs, Acta Biomaterialia, vol.8, issue.10, pp.3541-3551, 2012.
DOI : 10.1016/j.actbio.2012.06.022

URL : https://hal.archives-ouvertes.fr/hal-02140529

E. Verron, I. Khairoun, J. Guicheux, and J. M. Bouler, Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discovery Today, vol.15, issue.13-14, pp.13-14, 2010.
DOI : 10.1016/j.drudis.2010.05.003

URL : https://hal.archives-ouvertes.fr/hal-02142555

J. Guicheux, O. Gauthier, E. Aguado, D. Heymann, P. Pilet et al., Growth hormone-loaded macroporous calcium phosphate ceramic:In vitro biopharmaceutical characterization and preliminaryin vivo study, Journal of Biomedical Materials Research, vol.40, issue.4, pp.560-566, 1998.
DOI : 10.1002/(SICI)1097-4636(199804)40:1<79::AID-JBM9>3.0.CO;2-O

J. Guicheux, O. Gauthier, E. Aguado, P. Pilet, S. Couillaud et al., Human Growth Hormone Locally Released in Bone Sites by Calcium-Phosphate Biomaterial Stimulates Ceramic Bone Substitution Without Systemic Effects: A Rabbit Study, Journal of Bone and Mineral Research, vol.3, issue.4, pp.739-748, 1998.
DOI : 10.1359/jbmr.1998.13.4.739

J. J. Bara, I. Dresing, S. Zeiter, M. Anton, G. Daculsi et al., A doxycycline inducible, adenoviral BMP-2 gene delivery system to bone, J. Tissue Eng. Regener. Med, 2016.

E. U. Lee, H. C. Lim, J. Y. Hong, J. S. Lee, U. W. Jung et al., Bone regenerative efficacy of biphasic calcium phosphate collagen composite as a carrier of rhBMP-2, Clinical Oral Implants Research, vol.17, issue.Suppl 1, pp.91-99, 2016.
DOI : 10.1089/ten.tea.2010.0555

S. J. Polak, S. K. Levengood, M. B. Wheeler, A. J. Maki, S. G. Clark et al., Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds, Acta Biomaterialia, vol.7, issue.4, pp.1760-1771, 2011.
DOI : 10.1016/j.actbio.2010.12.030

T. Namikawa, H. Terai, E. Suzuki, M. Hoshino, H. Toyoda et al., Experimental Spinal Fusion With Recombinant Human Bone Morphogenetic Protein-2 Delivered by a Synthetic Polymer and ??-Tricalcium Phosphate in a Rabbit Model, Spine, vol.30, issue.15, pp.1717-1722, 2005.
DOI : 10.1097/01.brs.0000172155.17239.fa

K. Minier, A. Touré, M. Fusellier, B. Fellah, B. Bouvy et al., BMP-2 delivered from a self-crosslinkable CaP/hydrogel construct promotes bone regeneration in a critical-size segmental defect model of non-union in dogs, Vet. Comp. Orthop. Traumatol, vol.27, issue.6, pp.411-421, 2014.

M. B. Laursen, P. T. Nielsen, and K. Soballe, Bone remodelling around HA-coated acetabular cups, International Orthopaedics, vol.83, issue.2, pp.199-204, 2007.
DOI : 10.1080/00016470410001708040

F. S. Santori, S. Ghera, A. Moriconi, and G. Montemurro, Results of the anatomic cementless prosthesis with different types of hydroxyapatite coating, Orthopedics, vol.24, issue.12, pp.1147-1150, 2001.

C. F. Marques, F. H. Perera, A. Marote, S. Ferreira, S. I. Vieira et al., Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties, Journal of the European Ceramic Society, vol.37, issue.1, pp.37-359, 2017.
DOI : 10.1016/j.jeurceramsoc.2016.08.018

R. Detsch, S. Schaefer, U. Deisinger, G. Ziegler, H. Seitz et al., -Osteoclastic Activity Studies on Surfaces of 3D Printed Calcium Phosphate Scaffolds, Journal of Biomaterials Applications, vol.361, issue.3, pp.359-380, 2011.
DOI : 10.1007/s11154-006-9009-x

P. Weiss, L. Obadia, D. Magne, X. Bourges, C. Rau et al., Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials, Biomaterials, vol.24, issue.25, pp.4591-4601, 2003.
DOI : 10.1016/S0142-9612(03)00335-1

URL : https://hal.archives-ouvertes.fr/hal-02140641