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Abstract Molecular imaging continues to influence every as-
pect of cancer care including detection, diagnosis, staging and
therapy response assessment. Recent advances in the under-
standing of cancer biology have prompted the introduction of
new targeted therapy approaches. Precision medicine in on-
cology has led to rapid advances and novel approaches opti-
mizing the use of imaging modalities in cancer care, research
and development. This article focuses on the concept of
targeted therapy in cancer and the challenges that exist for
molecular imaging in cancer care.
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Targets in Cancer: Opportunities for Treatment
Innovation

Extensive investigations of carcinogenesis and tumor charac-
terization have identified various deregulations within tumors
and their microenvironments and have helped steer the direc-
tion of drug development in cancer [1, 2]. Target engagement
can be achieved through several modalities that modulate or
interact with cell surface receptors (monoclonal antibodies),
intracellular cascade pathways and signaling (small molecule
tyrosine kinase inhibitors) or micro-environment effects relat-
ed to tumor vasculature or hypoxia. There have also been
interesting results leveraging antibody-drug conjugates to in-
crease cytotoxic drug delivery [3]. Modulating the immune
environment by way of promoting dynamic changes in cancer
cell interaction with immune cells is a very active area of
study, including cellular therapy using ex-vivo propagation
of immune cells, vaccines and checkpoint inhibitors [4].
Finally, improved delivery of targeted agents to cancer cells
using nano-particles such as porphysomes presents tremen-
dous opportunity to precision-bomb cancer cells and reduce
bystander or collateral toxicity [5]. These biological abnor-
malities have already driven and will further enhance innova-
tion of probes for molecular imaging beyond FDG-PET im-
aging [6–8].

Aberrations in various cellular signaling pathways are in-
strumental in regulating cellular metabolism, tumor develop-
ment, growth, proliferation, metastasis, and cytoskeletal reor-
ganization [9]. Therefore an improved understanding of the
pathway is requisite to evaluate the impact of a potential drug
target and the associated imaging assessment for response. We
will describe the main pathways currently targeted in cancer
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care and how these new treatment options may impact when
and how molecular imaging can be used.

Cancer Cell Signaling Pathways – Fig. 1

Targeting PI3K/AKT/mTOR signaling in cancer

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian tar-
get of rapamycin (mTOR) pathway plays a critical role in the
malignant transformation of human tumors and their subsequent
growth, proliferation, and metastasis [10]. The PI3K/AKT/
mTOR signaling pathway regulates central aspects of cancer
biology such as metabolism (e.g. increased activation of the
GLUT transporters), cellular growth, and survival [11]. Upon
stimulation of receptor tyrosine kinases, PI3K phosphorylates
phosphatidylinositol-4,5-bis-phosphate 2 (PIP2) into PIP3
resulting in the activation of AKT. Among its targets, AKT

controls the activation of the downstream pathway effector, the
mammalian target of rapamycin (mTOR), which activates two
key substrates 4EBP1 and p70S6K. This results in increased
translation of target genes involved in angiogenesis (VEGF)
and cell cycle progression (cyclin D1, c-Myc). The primary
negative regulator of the PI3K pathway is the tumor suppressor
phosphatase and tensin homolog (PTEN). PTEN can dephos-
phorylate PIP3, reversing AKT activation and inhibiting further
downstream signaling; however, in the absence of PTEN inhi-
bition, AKT phosphorylates and leads to mTOR activation [12].
Various activating mutations in oncogenes together with the
inactivation of tumor suppressor genes are found in diverse ma-
lignancies across almost all members of the pathway [9].
Substantial progress in uncovering PI3K/AKT/mTOR alter-
ations and their roles in tumorigenesis have enabled the devel-
opment of novel targeted molecules and, alongside this, the
potential for developing efficacious anticancer treatment. Two
approved anticancer drugs, everolimus and temsirolimus,
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Fig. 1 Therapeutic strategies for targeting cancer cells. This figure
summarizes the most relevant drivers and signaling cascades involved
in solid tumors and treatments that are currently in clinical use (except
for venetoclax used for the treatment of CLL). #BRAF inhibitors.
Abbreviations: Akt: AKR mouse thymoma kinase; Bak, bcl-2
antagonist killer 1; Bax, Bcl-2 associated X protein; Bcl-2, B-cell
lymphoma gene 2; CDK, cyclin-dependent kinase, EGFR (ErbB1),
epidermal growth factor receptor; CLL, chronic lymphocytic leukemia;

ERK, extracellular signal-related kinase; FGFR, fibroblast growth factor
receptor; HER2 (ErbB2), human epidermal growth factor receptor 2;
HGF, Hepatocyte growth factor; mTOR, mammalian target of
rapamycin; MAPK, mitogen-activated protein kinase; MEK,
MAPK/ERK kinase; PARP, poly(ADP-ribose) polymerase; PI3K,
phosphoinositide 3-kinase; RAF (RAF1, v-raf-1 murine leukemia viral
oncogene homolog 1 and BRAF, v-raf murine sarcoma viral oncogene
homolog B1)
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exemplify targeted inhibition of PI3K/AKT/mTOR in the clinic
and many others are in development for many different types
of cancer. Adverse events observed in patients treated with
mTOR inhibitors are fairly consistent, irrespective of each spe-
cific indication. They include cutaneous and mucosal events
(i.e., stomatitis and skin rash), pulmonary dysfunction (non-
infectious pneumonitis), metabolic abnormalities (elevated
blood levels of glucose, cholesterol, and triglycerides), as well
as immune-related events (i.e., increased incidence of infec-
tions) [13]. As far as the risk of infections is concerned,
mTOR inhibitors were first developed as immune suppressive
agents and are still widely used as such in the transplantation
setting. Metabolic and immune-related adverse events are on-
target effects of mTOR inhibition, while cutaneous and muco-
sal effects may have a less direct association with mTOR inhi-
bition [13]. With the goal of being more selective and potent,
PI3K and Akt inhibitors have been developed and are under
evaluation. Several preclinical studies have systematically in-
vestigated the value of FDG or FET PET imaging. Both tracers
seem to be valuable biomarkers for the prediction and measur-
ing of response [14–16]. In a first clinical study the value of a
specifically VEGF targeting ligand has been evaluated and the
results seem to be promising [17].

The MAPK Pathway

Mitogen-activated protein kinase (MAPK) cascade is a critical
pathway for human cancer cell survival, dissemination, and re-
sistance to drug therapy. One of the most studied MAPK path-
ways is the extracellular signal-regulated kinase (ERK) pathway.
ERK is a subgroup of MAPKs that is activated by external
factors such as growth factors and mitogens [18]. The MAPK/
ERK pathway is activated by upstream genomic events and/or
activation of multiple signaling events where information coa-
lesces at this important nodal pathway point. This pathway is
tightly regulated under normal conditions by phosphatases and
bidirectional communication with other pathways, such as the
AKT/mTOR pathway [19]. Ligand-mediated activation of re-
ceptor tyrosine kinases such as Epidermal Growth Factor
Receptor (EGFR) initiate the cascade of ERK signaling that
flows through RAS GTPase, which acts as a molecular on/off
switch. Once RAS, a family of various oncogenes such as
KRAS, NRAS and HRAS, is turned on it recruits and activates
proteins necessary for the propagation of growth factor and other
receptor signals, including RAF and PI3K. RAF activation is
achieved through a complex process that requires lipid and pro-
tein binding, conformational changes, and regulatory phosphor-
ylation and dephosphorylation events. There are three RAF pro-
teins in mammals, including BRAF, and they can all activate
MAP kinase kinase (MEK) just upstream of ERK [20]. The
downstream MAPK/ERK signaling node, predominantly acti-
vated by upstream SRC/RAS/RAF signaling, is also regulated
by modulation through parallel pathways. Several mutations

involving theMAPK/ERKpathway have been identified, occur-
ring upstream in membrane receptor genes (EGFR), in signal
transducers (RAS), and in downstream kinases belonging to the
MAPK/ERK pathway itself (BRAF) in human cancers and are
ripe for targeting [19, 21]. Currently approved for the treatment
of unresectable metastatic melanoma with somatic point muta-
tion in the BRAF gene resulting in constitutive activation of
BRAF (V600E) kinase, inhibitors of B-RAF kinase are being
studied alone (vemurafenib, dabrafenib) and in combination
with inhibitors of MEK (cobimetinib) and other pathways to
optimize treatment of many tumor types. This therapeutic is well
tolerated with the most common adverse effects including skin
reactions, photosensitivity, headache and arthralgia, although an
increased risk of development of localized cutaneous squamous
cell carcinoma has also been observed [22, 23]. Inhibitor of
MEK in monotherapy (Trametinib) was also shown to be effec-
tive for the treatment of patients with un-resectable or metastatic
melanoma harboring activating BRAF V600E/K mutations [24].
However, therapies targeted toward MAPK/ERK components
have variable response rates when used in different solid tumors,
such as colorectal cancer and ovarian cancer. Understanding the
differential nature of activation of the MAPK/ERK pathway in
each tumor type is critical in developing single and combination
regimens [19]. Several studies have evaluated development of
new tracers to specifically target the altered pathways [25–34].
Also, standard FDG PET still has its role for therapy evaluation
or prediction of response [35].

HGF/c-MET/Pathway

The Met receptor tyrosine kinase is the prototypic member of a
small subfamily of growth factor receptors that when activated
induce mitogenic, motogenic, and morphogenic cellular re-
sponses. MET gene encodes the receptor tyrosine kinase
(RTK) MET or c-MET that is activated by the ligand HGF
(hepatocyte growth factor). Abnormal Met signaling has been
strongly implicated in tumorigenesis, particularly in the devel-
opment of invasive and metastatic phenotypes [36]. The HGF-
MET binding leads to MET phosphorylation and subsequent
activation of different effectors such as GRB2, CRK, CRKL,
SHC and GAB1. These effectors trigger the activation of other
pathways including RAS-MAP (through interaction between
SOS and GRB2), PI3K-AKT, STAT3 and NF-kB [37]. The
MET pathway is maintained by a balance between stimulating
signals (PAX5, PAX8 and HIFα) and down regulation mecha-
nisms such as ubiquitination mediated by CBL or cleavage by
metalloprotease ADAM-like and gamma-secretase.
Deregulation of the HGF-MET cellular axis in cancer can be
detected at different molecular levels such as by changes in
extent of protein expression, by variation in gene copy number
and by presence of genemutations. Hyperactivation of this path-
way occurs in different cancers and is related to a worse prog-
nosis [38]. A small molecule inhibitor (crizotinib) was approved
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for the treatment of patients with metastatic non-small cell lung
cancer (NSCLC) whose tumors are anaplastic lymphoma kinase
(ALK)-positive as detected by an FDA-approved test [39]. A
recent preclinical study evaluated the potential of FLT in crizo-
tinib treatment [40]. Numerous clinical trials with newmonoclo-
nal antibodies or tyrosine kinase inhibitors targeting MET are
ongoing in different solid tumors. Radiolabelling of these mono-
clonal antibodies for in vivo assessment of the biodistribution
using the radionuclides Copper-64 or Zirconium-89 (both posi-
tron emitters with long half-life; 12.8 and 3.3 days, respectively)
are interesting new possibilities for individualized therapy con-
cepts [41–45].

HER Pathway

The ERBB family of receptor tyrosine kinases has a central
role in the tumorigenesis of many types of solid tumors
[46]. The ErbB receptor tyrosine kinase family consists of
four cell surface receptors: ErbB1/EGFR/HER1, ErbB2/
HER2, ErbB3/HER3, and ErbB4/HER4. ErbB receptors
are typical cell membrane receptor tyrosine kinases that
are activated following ligand binding, except ErbB2, and
receptor dimerization. ERBB family receptors activate sev-
eral downstream pathways, including the RAS–ERK and
PI3K–AKT pathways [47]. Inappropriate activation of
EGFR and ERBB2 in cancer can occur through a range of
mechanisms, including overexpression (often due to gene
amplification), point mutations, partial deletions and auto-
crine ligand–receptor stimulation [48]. The frequent activa-
tion of ERBB family members in cancer makes them attrac-
tive therapeutic targets and various members have
been approved for the treatment of several cancers.
Trastuzumab is a monoclonal antibody given intravenously
that interferes with the HER2/neu receptor, and is well
known for its activity in ErbB2-positive breast cancer [49,
50]. Another HER2 antibody (pertuzumab) was also ap-
proved for use in combination with trastuzumab and doce-
taxel for neoadjuvant treatment of ErbB2-positive breast
cancer patients [51]. Lapatinib is the first dual inhibitor in
clinical use acting as a tyrosine kinase inhibitor of EGFR
and HER2 used in the treatment of ErbB2-overexpressing
breast cancer [52]. Gefitinib, erlotinib, and afatinib are oral-
ly active inhibitors of EGFR tyrosine kinase activity that
are used in the treatment of ERBB1-mutant lung cancer
[53]. Cetuximab and panitumumab are monoclonal anti-
bodies that target ErbB1 and are used in the treatment of
colorectal cancer [54, 55]. Recently several labeling con-
cepts and first preclinical as well as clinical studies of spe-
cific tracers based on the above mentioned ligands have
been presented and display very promising results that will
have to be further translated into the clinical setting [43, 44,
56–63].

DNA Damage Response Processes – Fig. 1

Tumor initiation and progression is inexorably linked to dis-
ruption of the DNA damage-response (DDR) [64]. A novel
therapeutic strategy, cellular DDR processes engage various
proteins that sense DNA damage, initiate signaling pathways
to promote cell-cycle checkpoint activation, trigger apoptosis,
and coordinate DNA repair [65].

& DNA Repair

The DNA repair pathway is a complex set of cellular re-
sponses that are elicited following DNA damage, commonly
including base and sugar modifications, single- and double-
strand breaks, DNA-protein cross-links, and base-free sites
[64]. To counteract these damages, multiple DNA repair path-
ways exist with subpathways providing lesion specificity.
These processes include base excision repair, mismatch repair,
nucleotide excision repair, and double-strand break repair
(DSBs), which comprise both homologous recombination
and non-homologous end-joining.

An underlying hallmark of cancers is their genomic insta-
bility, which is associated with a greater propensity to accu-
mulate DNA damage. Historical treatment of cancer by radio-
therapy and DNA-damaging chemotherapy is based on this
principle, yet it is accompanied by significant collateral dam-
age to normal tissue and unwanted side effects. Targeted ther-
apy based on inhibiting the DDR in cancers offers the poten-
tial for a greater therapeutic window by tailoring treatment to
patients with tumors lacking specific DDR functions. The
recent approval of olaparib (Lynparza), the poly (ADP-
ribose) polymerase (PARP) inhibitor for treating tumors har-
boring BRCA1 or BRCA2 mutations, represents the first med-
icine based on this principle, exploiting the synthetically lethal
genetic relationship underlying in the tumor [66, 67]. Olaparib
has been the first PARP inhibitor approved in practice; and
many others are in the pipeline with the main side effects
being nausea/vomiting, hematologic and fatigue [68]. There
is an increasing body of evidence indicating benefit of
targeting pathways involved in maintaining DNA integrity,
beyond BRCA1 and BRCA2 signaling [65, 69] with the abil-
ity to leverage deficiencies in homologous recombination
sharing phenotypic features of those tumors exhibiting
BRCA-like behavior (BRCAness/HRD phenotype) [70].
Cancer-specific defects in DNA repair pathways can be used
as targets for personalized therapeutic approaches [71, 72].
Specific in vivo imaging of PARP activity has been success-
fully demonstrated, whether this approach will be translatable
to the clinical situation remains to be shown [73, 74]. There
are also further concepts to develop PET and SPECT radio-
tracers that are related to the mechanisms of action of new
drugs such as using imaging to evaluate DNA damage repair
proteins [8].
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However, DNA repair pathways can enable tumor cells to
survive DNA damage that is induced by chemotherapeutic
treatments; therefore, inhibitors of specific DNA repair path-
ways might prove efficacious when used in combination with
DNA-damaging chemotherapeutic drugs [75].Mechanisms of
resistance to standard chemotherapy or targeted therapy are an
active area of research.

& Cell Cycle Checkpoint

The cell cycle is a complex process involving numerous
regulatory proteins, of which the cyclin-dependent kinases
(CDK) are central. These proteins regulate a cell’s progression
through the stages of the cell cycle and are, in turn, regulated by
numerous proteins, including p53, p21, p16, and cdc25.
Downstream targets of cyclin-CDK complexes include pRb
and E2F [76]. The cell cycle is altered in cancer due to alter-
ations either in oncogenes that indirectly affect the cell cycle or
in tumor suppressor genes or oncogenes that directly impact
cell cycle regulation, such as p53, p16, or viral infection includ-
ing Human Papillomavirus (HPV). Tumor-associated cell cycle
defects are often mediated by alterations in CDK activity [77].
It has become progressively clear that cancer cells have defec-
tive cell cycle checkpoints. These defects, which very likely
contribute to neoplastic transformation and progression by in-
creasing genetic instability, can be exploited to envision strate-
gies that will increase our treatment options against cancer [78].
The inhibition of the checkpoint kinases can be achieved with
conventional DNA damaging therapies. In this case cancer
cells lacking the G1 checkpoint lose the remaining protective
effect of the G2/M checkpoint and die by mitotic catastrophe
[79]. The other strategy relies on addiction of cancer cells trans-
formed by active oncogenes (such as Ras, Myc or Cyclin E) to
ATR, Chk1, and Wee1 kinases that allow them to cope with a
high level of replication stress [79]. Several agents are currently
in development. An earlier study was able to demonstrate
in vivo CDK4/6 inhibition by means of FDG and FLT [80].
Specific labeling of the new agents in development could eval-
uate the theranostic potential.

The Retinoblastoma Pathway

Retinoblastoma (Rb) protein is a regulator of G1/S checkpoint.
When Rb is not phosphorylated it binds and represses the tran-
scription factor E2F; but when RB is phosphorylated by a
cyclin-dependent-kinase (CDK4 and CDK6), E2F is released
and DNA replication is active [81]. Different types of cyclin D
associate with CDK4 or CDK6, creating a complex able to
phosphorylate Rb. CDK4/6 activity is inhibited by INK4 fam-
ily proteins, such as p16Ink4a [82]. Dysregulated activation of
the cyclin D-CDK4/6-INK4Rb pathway is frequently observed
in a range of tumor types. Different types of genomic mutations
have been reported: amplification in CCDN1 (the gene that

encodes cyclin D1), amplification ofCDK4 orCDK6, mutation
in CDKN2A (genes that encode p16Ink4a) or activating aber-
rations in PI3K/AKT/mTOR or RAS/RAF/MEK [78]. Activity
of CDK4/6may be targeted by specific agents and clinical trials
are ongoing with CDK4/6 inhibitors like palbociclib, ribociclib
and abemaciclib. The main toxicities reported are hematologi-
cal and fatigue [83]. In breast cancer palpociclib has already
been approved in the United States as first-line treatment in
association with letrozole in postmenopausal women with
ER-positive and HER2-negative metastatic breast cancer [84].
The value of FDG for therapy response assessment has been
demonstrated [85], however specific labeling of the inhibitors
might also be of interest in this setting.

P53

TP53 is one of the most important tumor suppressor genes and
is frequently mutated in human cancers [86]. P53 has different
functions including activation of DNA repair proteins, G1/S
cell cycle checkpoint allowing cells to fix the DNA damage
and activation of apoptosis. Generally, p53 functions as a tran-
scription factor that is stabilized and activated by various
genotoxic and cellular stress signals, such as DNA damage,
hypoxia, oncogene activation and nutrient deprivation, conse-
quently leading to cell cycle arrest, apoptosis, senescence and
metabolic adaptation [87]. TP53 somatic mutations are a de-
fining event in cancers [88–90]. When p53 is not functioning,
cells are dependent on S/G2 checkpoint to arrest growth and
allow DNA repair. Inhibition of S/G2 checkpoint in p53 defi-
cient tumor cells results in the favoring of apoptosis and en-
hancement of the chemotherapy effect. Wee1 is a tyrosine
kinase implicated in the G2 checkpoint and its inhibition in
HGSOC is under investigation in various clinical trials. P53
seems an attractive target in cancers and contemporary strate-
gies targeting p53 have been developed, including gene ther-
apy to restore p53 function, inhibition of p53-MDM2 interac-
tion, restoration of mutant p53 to wild-type p53 or targeting
p53 family proteins; however, p53-targeted therapy remains
challenging [87, 91, 92]. Different types of TP53 mutations
have been described but the functionality of this mutation is
complex [93]. Some types of TP53mutations are termed gain-
of-function or loss-of-function mutations and the exact impact
on patient outcome and response to treatment is not well
established; investigations remain on-going. The efficient im-
plementation of p53-targeting treatments into clinical practice
requires thorough understanding of the mechanisms
governing p53 response in cancer cells [94].

& Programmed Cell Death

Apoptosis, autophagy and programmed necrosis are medi-
ated by an intracellular program, which is deregulated in can-
cer, and thus can be exploited therapeutically [95].
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Apoptosis

The mechanisms of apoptosis are highly complex and sophis-
ticated, involving an energy-dependent cascade of molecular
events. There are two main apoptotic pathways: the extrinsic
or death receptor pathway and the intrinsic or mitochondrial
pathway. However, these two pathways converge on the same
terminal, or execution, pathway initiated by the cleavage of
caspase-3 and result in DNA fragmentation, degradation of
cytoskeletal and nuclear proteins, cross-linking of proteins,
formation of apoptotic bodies, expression of ligands for
phagocytic cell receptors and finally uptake by phagocytic
cells [96]. The crucial event that commits a cell to death by
the intrinsic apoptotic pathway is permeabilization of the outer
mitochondrial membrane, controlled primarily by the BCL2
family of proteins, with the subsequent release of multiple
proapoptotic factors that direct the physiological changes de-
scribed above [97].

Within cancer cells, apoptosis is controlled by the BCL-2
family of proteins, making them powerful arbiters of cell fate
in response to stress induced by neoplastic transformation as
well as exposure to anti-cancer therapies [98]. Many cancers
evade pro-apoptotic stress signals by up-regulating anti-apo-
ptotic proteins such as BCL-2, BCL-xL or MCL-1 to main-
tain their survival; although, this may come at a cost, as these
cancers may also become dependent on these anti-apoptotic
proteins for survival. The development and deployment of
BCL-2 family inhibitors (drugs that mimic the activity of
pro-apoptotic BH3-only proteins or ‘BH3 mimetics’) is
based on this paradigm, and the first potent and specific
molecules are now being evaluated in clinical trials [99].
Interestingly, a first BCL-2 inhibitor (ABT-199/venetoclax),
developed as a BCL-2 specific BH3-mimetic that avoids
binding to BCL-xL, has been approved for the treatment of
patients with chronic lymphocytic leukemia (CLL) with 17p
deletion underlining the first achievement for direct targeting
of the apoptotic pathway in cancer [100]. Several studies
have investigated imaging probes targeting either the intrin-
sic or extrinsic pathway [101, 102]. Whether this will have
an effect on therapy modulations still needs to be further
investigated [103].

Autophagy

Autophagy plays a key role in the maintenance of cellular
homeostasis as it is a catabolic process that facilitates nutrient
recycling via degradation of damaged organelles and proteins
through lysosomal mediated degradation [104]. In neoplastic
cells, autophagic responses constitute a means to cope with
intracellular and environmental stress, thus favoring tumor
progression; however, exerting a differential impact on malig-
nant transformation and tumor progression [105].
Pharmacological inhibitors of autophagy exert antineoplastic

effects against established tumors, especially in combination
with other forms of therapy. However, highly targeted inhib-
itors of autophagy for use in humans are not available, and the
molecules employed so far to this aim (i.e., chloroquine and
hydroxychloroquine) have several therapeutically relevant
off-target effects [105]. Understanding the underlying molec-
ular mechanisms that govern these effects will allow for the
development of rational approaches to manipulate autophagy
for clinical benefit [106] and are under investigation [107].

The Tumor Microenvironment: Angiogenesis / Immune
cells – Fig. 2

The tumor microenvironment is increasingly recognized to
play a complex role in tumor growth, development and me-
tastases. Growth of malignant tumors requires a functional
blood supply to provide nutrients, and this is facilitated and
regulated by selection of pro-angiogenic peptides and growth
factors in a complex interplay with regulatory anti-angiogenic
factors [108].

& Angiogenesis

Tumor vasculature is a field of intense study, pioneered by
Judah Folkman, Bob Kerbel and Rakesh Jain [109]. Vascular
Endothelial Growth Factor (VEGF) is a key driver of angio-
genesis and has been recognized as an important mechanism
of tumor growth, survival and metastasis in cancers [110].
VEGF overexpression has been consistently demonstrated in
different cancers, and over-expression of VEGF is likely re-
sponsible for some of the pathogenomic features of advanced
cancer with ascites, secondary to capillary leakiness caused by
excessive VEGF [111]. It is also apparent that tumors and
metastases often have disorganized internal vasculature, and
unchecked cellular growth often leads to intra-tumoral hypox-
ia, which is a strong prognostic indicator of resistance to che-
motherapy and radiation [112].

The microenvironment features of cancer growth have
been incorporated into therapeutic strategies which impact
upon the growth of tumors through modulation. Exploitation
of this has been most notable with the incorporation of
bevacizumab, a VEGF inhibitor, in conjunction with chemo-
therapy. Beyond VEGF, different targets have been investigat-
ed such as platelet-derived growth factor, fibroblast growth
factor, angiopoietin and Ephrin type-A receptor 2 [113].
Several other VEGF targeting strategies have also led to pos-
itive results in randomized clinical trials, and have been incor-
porated in clinical practice. Targeting the tumor microenviron-
ment through inhibition of tumor-associated angiogenesis has
been an effective strategy in some malignancies. Currently,
there are a few main approaches in targeting angiogenesis
which have been tested in clinical trials and approved in
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clinical practice including: i) monoclonal antibodies binding
VEGF (bevacizumab); ii) decoy receptors, ‘VEGF-trap’
(aflibercept); iii) tyrosine kinase inhibitors (sunitinib and so-
rafenib); and iv) monoclonal antibodies targeting VEGF re-
ceptors (ramucirumab) [114]. These agents are being used in
the treatment of different cancer types such as breast, colorec-
tal, hepatocellular, gastric, lung, kidney, and ovarian cancers.
Clinical practice has shown that anti-angiogenic therapy is
accompanied by a number of side-effects including hemor-
rhage, hypertension, proteinuria, impaired wound healing,
thrombosis and others [115]. In many cases, antiangiogenic
agents were added to standard chemotherapy and offered an
improvement in therapeutic efficacy with different cancers
(colorectal, non-small cell lung cancer); however, a decade

after approval of the first antiangiogenic agents,
antiangiogenic agents are prescribed alone as therapy for such
diseases as kidney cancer or combined with different targeted
therapies (i.e. lenvatinib in combination with everolimus in
advanced renal cell carcinoma) [116]. Using Zirkonium-89,
the in vivo biodistribution of bevacizumab was shown. In
another study the modulation of the hypoxic area within a
tumor by bevacizumab was demonstrated by means of a hyp-
oxia PET tracer [17, 117, 118].

& Immune Modulation

The importance of intact immune surveillance in control-
ling outgrowth of neoplastic transformation has been

TCR MHC

CTLA-4

B7-1
B7-2

TCR MHC

PD-1
PD-L1

Dendritic cellT cell

Cancer 
cell

T cell

CD28

Anti-PD-1
(nivolumab, pembrolizumab)

Anti-PD-L1
(atezolizumab)

Anti-CTLA-4
(ipilimumab)

Angiogenesis : 
proliferation, survival, migration, permeability

Immune checkpoints

B7

Endothelial 
cell

Blood vessel

Cancer-associated 
fibroblast 

Cancer cellImmune infiltrate

VEGF

PDGFR

Anti-VEGF
(bevacizumab)

VEGF solube receptors
(aflibercept*)Anti-VEGFR

(ramucirumab)

(sorafenib, sunitinib)

VEGFR

Small-molecules kinase inhibitors (inib)

Monoclonal 
antibodies (MAb)

FGFR

(lenvatinib)
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Multiple strategies to target the tumor microenvironment are currently
in clinical use as indicated here and referenced throughout the review.
The tumor vasculature can be targeted with multiple drugs, such as
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VEGF) and sunitinib, sorafenib and lenvatinib (multi-target receptor
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demonstrated in preclinical models [119]. Accumulating evi-
dence shows a correlation between tumor-infiltrating lympho-
cytes (TILs) in cancer tissue and favorable prognosis in vari-
ous malignancies. In particular, the presence of CD8+ T-cells
and the ratio of CD8+ effector T-cells / FoxP3+ to regulatory
T-cells correlates with improved prognosis and long-term sur-
vival in many solid tumors [120].

Immunotherapy is defined as the approach to treating can-
cer by generating or augmenting an immune response against
it [4]. Two types of immunotherapy have emerged as particu-
larly effective over the past decade: immune-cell-targeted
monoclonal antibody (mAb) therapy and adoptive cellular
therapy [121]. Since the first approval of a checkpoint inhib-
itor (ipilimumab) as monotherapy for the treatment of ad-
vanced melanoma, several immune-checkpoint-blocking
mAbs - cytotoxic T lymphocyte-associated protein 4
(CTLA-4) and programmed cell death protein 1 (PD1) - have
been approved for the treatment of patients with several types
of cancer (Fig. 2).

One approach to augment antitumor immune responses has
been termed Bcheckpoint blockade^. This term refers to the
strategy that targets the natural negative signals that are used
to regulate the immune response [122]. T cell activation is
regulated by a variety of activating and inhibitory receptor/
ligand interactions [123]. One of the well-studied inhibitory
molecules is PD-1, which is expressed on the cell surface of
activated T-cells [124–126]. PD-1 (encoded by the gene
Pdcd1) is an immunoglobulin (Ig) superfamily member relat-
ed to CD28 and CTLA-4, which negatively regulates antigen
receptor signaling upon engagement of its ligands (PD-L1
and/or PD-L2) [127]. PD-1 and family members are type I
transmembrane glycoproteins containing an Ig Variable-type
(V-type) domain responsible for ligand binding and a cyto-
plasmic tail that is responsible for the binding of signaling
molecules. PD-1 has been shown to be expressed on activated
lymphocytes including peripheral CD4+ and CD8+ T-cells,
B-cells, T regs and Natural Killer cells [128]. The ligands
for PD-1 (PD-L1 and PD-L2) are constitutively expressed or
can be induced in a variety of cell types, including non-
hematopoietic tissues as well as in various tumors. Binding
of either PD-1 ligand to PD-1 inhibits T-cell activation trig-
gered through the T-cell receptor. PD-L1 is expressed at low
levels on various non-hematopoietic tissues, most notably on
vascular endothelium, whereas PD-L2 protein is only
detectably expressed on antigen presenting cells found in lym-
phoid tissue or chronic inflammatory environments. PD-L2 is
thought to control immune T-cell activation in lymphoid or-
gans, whereas PD-L1 serves to dampen unwarranted T-cell
function in peripheral tissues. Although healthy organs ex-
press little (if any) PD-L1, a variety of cancers were demon-
strated to express this T-cell inhibitor. Recent studies suggest
that PD-L1 is upregulated only when tumor cells are in close
proximity with T cells in the tumor microenvironment

[129–131]. The PD-1/PD-L1 pathway may play a critical role
in tumor immune evasion and can be considered as an attrac-
tive target for therapeutic intervention in specific cancers.
Indeed, PD-1 inhibitors, such as nivolumab and
pembrolizumab have been approved in melanoma and non-
small cell lung cancers (NSCLC). Very recently, a PD-L1
antibody (atezolizumab) was approved for the treatment of
patients withmetastatic NSCLCwho have progressed on prior
chemotherapy (and targeted therapy, for those with EGFR or
ALK genetic alterations) showing that novel immunother-
apies are playing an increasing role in the treatment of
NSCLC [132]. PD-1 and PD-L1 checkpoint inhibitors are
associatedwith a specific spectrum of immune-related adverse
events with potential dermatological, gastrointestinal, pulmo-
nary, endocrine, renal and hepatic toxicities. This spectrum is
different from toxicities known for kinase inhibitors or cyto-
toxic drugs and are, in general, reversible and manageable
with immunosuppressive therapy, which is indicated for ut-
most all events of moderate to serious severity [131]. Others
strategies are under evaluation including combination treat-
ment and oncolytic virus therapy [4]. Several approaches have
already been investigated to implement targeted imaging of
PD-L1 expression [133–135].

As human cancers carry a multitude of somatic gene mu-
tations and epigenetically altered genes, the products of which
are potentially recognizable as foreign antigens, immunother-
apy seems an attractive strategy. PD-1 blockade may enhance
the immune response to these mutated antigens. The
neoantigen load may form a biomarker in cancer immunother-
apy and provide an incentive for the development of novel
therapeutic approaches that selectively enhance T cell reactiv-
ity against this class of antigens [136].

Targeted Therapy – Challenge of Imaging in Cancer

In the field of oncology, there continues to be a strong drive
towards advancing and achieving personalizedmedicine, such
that treatments are tailored to the individual patient. Based on
the mechanism of drug action, imaging assessment is evolving
in parallel. This contemporary challenge will persist since a
large number of drugs are developed in each of the three
systemic therapeutic modalities: classical cytotoxics, new
targeted agents, and emergent immunotherapeutic ap-
proaches. Ideally, tumor and patient evaluations will lead to
the selection of the best treatment (based on tumor character-
ization) and the right dosing schedule (based on patient char-
acterization) [137]. Although our understanding of the molec-
ular complexity of cancer has increased over the years, many
challenges remain including disease heterogeneity, clinical
and genomic patient variability, limited number of effective
treatments, and drug delivery. Thus, it is imperative to devise
innovative and adaptive imaging assessment to accelerate our
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efforts in improving diagnosis, disease extension and therapy
efficacy.

Another consideration in terms of imaging perspective is
knowledge of drug mechanics, drug chemical (TKI,
Antibody) and drug half-life for imaging schedule [138].
Indeed, molecular therapies that either have a short life or
target pathways exhibiting recovery early after drug cessation
may interfere in the result interpretation of the conventional
FDG PET for response assessment [139]. The delay between
the last drug intake could lead to inaccurate results if a patient
was scanned several days after treatment cessation, at a time
when target inhibition is no longer present. The drug schedule/
interruption may have been determined by the prescription of
the referring oncologist, but also by poor observation or re-
cording of medication. Recording of the last drug intake be-
fore PET scanning is not routinely done in PET units, though
this can impact the results of imaging, particularly for thera-
pies with short half-life. The drug pharmacokinetics should be
considered to establish the PET imaging time points. Given
the potential chronic administration and the increased pre-
scription of oral target therapies, compliance to drug intake
may be compromised and, as such, there is a need to system-
atically incorporate into the PET reports information regarding
the date and time of the last drug intake.

These new therapies require novel tools and potential
targeting imaging to assess the response to treatment [140,
141]. Pseudoprogression, tumor growth from treatment effect
rather than true disease progression, has been described with
immune checkpoint inhibitors. Pseudoprogression is uncom-
mon and indicates a high likelihood of > 1 year survival and,
as such, needs to be identified [142]. These novel agents entail
a whole new series of concepts that have resulted in a number
of opportunities for novel imaging tools. Such innovation may
be incorporated in trials and would allow for better selection
of candidate populations, discovering and validating bio-
markers, defining suitable endpoints, and proposing increas-
ingly more accurate non-invasive imaging response criteria,
including radiological as well as molecular imaging informa-
tion [143, 144].

Targeted imaging beyond classical FDG has evolved in the
last years very rapidly; however, the fact that every new im-
aging probe has to undergo the same steps as a new pharma-
ceutical has hampered the broad implementation of new ra-
diopharmaceuticals. The knowledge of biodistribution aspects
of different probes is of great importance. Furthermore the
right radionuclide should be used to be able to follow, for
example, the long biological half-life of antibodies.

Conclusion

Staging in the era of precision and personalized therapy (target
driven) has created an exciting new platform of development

for imaging. The ‘classic’ FDG PET-scan will improve to a
personalized PET-based molecular imaging [145], which will
result in parallel improvements in response prediction [146],
therapy monitoring [147, 148], potential pharmacodynamic
markers and quantitative imaging clinical trials [149]. Our
understanding of the evoked cellular processes in response
to DNA damage has improved considerably in recent years.
Advancements in this area have revealed attractive bio-
markers, which could be used to improve upon existing
methods for non-invasive early cancer detection and therapy
evaluation. A range of PET/SPECT imaging agents are cur-
rently under development and poised for evaluation in the
clinical setting.
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