M. Kogevinas and M. Porta, Socioeconomic differences in cancer survival., Social Inequalities and Cancer, pp.177-206
DOI : 10.1136/jech.45.3.216

M. Coleman, B. Rachet, and L. Woods, Trends and socioeconomic inequalities in cancer survival in England and Wales up to 2001, British Journal of Cancer, vol.314, issue.7, pp.1367-1373, 2004.
DOI : 10.1136/bmj.314.7079.472

L. Woods, B. Rachet, and M. Coleman, Origins of socio-economic inequalities in cancer survival: a review, Annals of Oncology, vol.17, issue.1, pp.5-19, 2006.
DOI : 10.1093/annonc/mdj007

Y. Ito, T. Nakaya, and T. Nakayama, Socioeconomic inequalities in cancer survival: A population-based study of adult patients diagnosed in Osaka, Japan, during the period 1993???2004, Acta Oncologica, vol.86, issue.1, pp.1423-1433, 2004.
DOI : 10.1038/sj.bjc.6600831

L. Jansen, A. Eberle, and K. Emrich, Socioeconomic deprivation and cancer survival in Germany: An ecological analysis in 200 districts in Germany, International Journal of Cancer, vol.48, issue.Suppl 2, pp.2951-2960, 2014.
DOI : 10.1016/j.ejca.2011.05.028

J. Stanbury, P. Baade, Y. Yu, and X. Yu, Cancer survival in New South Wales, Australia: socioeconomic disparities remain despite overall improvements, BMC Cancer, vol.200, issue.10, p.48, 2016.
DOI : 10.5694/mja13.11134

URL : https://bmccancer.biomedcentral.com/track/pdf/10.1186/s12885-016-2065-z

S. Subramanian, The relevance of multilevel statistical methods for identifying causal neighborhood effects, Social Science & Medicine, vol.58, issue.10, pp.1961-1967, 2004.
DOI : 10.1016/S0277-9536(03)00415-5

L. Duchateau and P. Janssen, The Frailty Model, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01602399

A. Wienke, Frailty Models in Survival Analysis, 2011.
DOI : 10.1201/9781420073911

L. Antunes, D. Mendonca, M. Bento, and B. Rachet, No inequalities in survival from colorectal cancer by education and socioeconomic deprivation - a population-based study in the North Region of Portugal, 2000-2002, BMC Cancer, vol.21, issue.5, p.608, 2000.
DOI : 10.1097/CEJ.0b013e32834f811c

J. Kish, M. Yu, A. Percy-laurry, and S. Altekruse, Racial and Ethnic Disparities in Cancer Survival by Neighborhood Socioeconomic Status in Surveillance, Epidemiology, and End Results (SEER) Registries, JNCI Monographs, vol.138, issue.3, pp.2014236-243, 2014.
DOI : 10.1093/ije/30.3.427

P. Dialla, P. Arveux, and S. Ouedraogo, Age-related socio-economic and geographic disparities in breast cancer stage at diagnosis: a population-based study, The European Journal of Public Health, vol.10, issue.6, pp.966-972, 2015.
DOI : 10.1136/bmj.38114.679387.AE

P. Townsend, P. Phillimore, and A. Beattie, Health and Deprivation: Inequality and the North, 1988.

V. Carstairs and R. Morris, Deprivation: explaining differences in mortality between Scotland and England and Wales., BMJ, vol.299, issue.6704, pp.886-889, 1989.
DOI : 10.1136/bmj.299.6704.886

URL : https://www.bmj.com/content/299/6704/886.full.pdf

L. Woods, B. Rachet, and M. Coleman, Choice of geographic unit influences socioeconomic inequalities in breast cancer survival, British Journal of Cancer, vol.54, issue.Suppl 2, pp.1279-1282, 2005.
DOI : 10.1136/jech.54.4.306

D. Roux and A. , Investigating Neighborhood and Area Effects on Health, American Journal of Public Health, vol.91, issue.11, pp.1783-1789, 2001.
DOI : 10.2105/AJPH.91.11.1783

D. Roux and A. , A glossary for multilevel analysis, Journal of Epidemiology & Community Health, vol.56, issue.8, pp.588-594, 2002.
DOI : 10.1136/jech.56.8.588

C. Pornet, C. Delpierre, and O. Dejardin, Construction of an adaptable European transnational ecological deprivation index: the French version, Journal of Epidemiology and Community Health, vol.66, issue.11
DOI : 10.1136/jech-2011-200311

, J Epidemiol Community Health, vol.66, issue.11, pp.982-989, 2012.

T. P. Deprivation, J Soc Policy, vol.16, issue.2, pp.125-146, 1987.

E. Guillaume, C. Pornet, and O. Dejardin, Development of a cross-cultural deprivation index in five European countries, Journal of Epidemiology and Community Health, vol.67, issue.(8 Suppl 2), pp.493-499, 2016.
DOI : 10.1093/pubmed/fdv101

URL : https://hal.archives-ouvertes.fr/hal-01910096

M. Moreno-betancur, H. Sadaoui, C. Piffaretti, and G. Rey, Survival Analysis with Multiple Causes of Death, Epidemiology, vol.28, issue.1, pp.12-19, 2017.
DOI : 10.1097/EDE.0000000000000531

L. Remontet, N. Bossard, A. Belot, and J. Estève, An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies, Statistics in Medicine, vol.14, issue.10, pp.2214-2228, 2007.
DOI : 10.1007/978-1-4899-4473-3

URL : https://hal.archives-ouvertes.fr/hal-00492901

J. Estève, E. Benhamou, M. Croasdale, and R. L. , Relative survival and the estimation of net survival: Elements for further discussion, Statistics in Medicine, vol.7, issue.5, pp.529-538, 1990.
DOI : 10.1002/sim.4780090506

M. Pohar, J. Stare, and J. Estève, On estimation in relative survival, Biometrics, vol.68, issue.1, pp.113-120, 2012.

C. Danieli, L. Remontet, N. Bossard, L. Roche, and A. Belot, Estimating net survival: the importance of allowing for informative censoring, Statistics in Medicine, vol.49, issue.3, pp.775-786, 2012.
DOI : 10.1002/bimj.200610328

L. Roche, C. Danieli, and A. Belot, Cancer net survival on registry data: Use of the new unbiased Pohar-Perme estimator and magnitude of the bias with the classical methods, International Journal of Cancer, vol.39, issue.10, pp.2359-2369, 2013.
DOI : 10.1093/ije/dyp392

N. Bossard, M. Velten, and L. Remontet, Survival of cancer patients in France: A population-based study from The Association of the French Cancer Registries (FRANCIM), European Journal of Cancer, vol.43, issue.1, pp.149-160, 2007.
DOI : 10.1016/j.ejca.2006.07.021

URL : https://hal.archives-ouvertes.fr/hal-00434567

A. Mariotto, A. Noone, and N. Howlader, Cancer Survival: An Overview of Measures, Uses, and Interpretation, JNCI Monographs, vol.106, issue.9, pp.145-186, 2014.
DOI : 10.1002/cncr.21803

D. Angelis, R. Sant, M. Coleman, and M. , Cancer survival in Europe 1999???2007 by country and age: results of EUROCARE-5???a population-based study, The Lancet Oncology, vol.15, issue.1, pp.23-34, 2014.
DOI : 10.1016/S1470-2045(13)70546-1

URL : https://hal.archives-ouvertes.fr/hal-01915077

C. Allemani, H. Weir, and H. Carreira, Global surveillance of cancer survival 1995???2009: analysis of individual data for 25???676???887 patients from 279 population-based registries in 67 countries (CONCORD-2), The Lancet, vol.385, issue.9972, pp.977-1010, 2015.
DOI : 10.1016/S0140-6736(14)62038-9

URL : https://hal.archives-ouvertes.fr/hal-01912088

M. Pohar-perme, J. Esteve, and B. Rachet, Analysing population-based cancer survival ??? settling the controversies, BMC Cancer, vol.15, issue.1, p.933, 2016.
DOI : 10.1016/j.cmpb.2006.01.004

, Clinical Epidemiology downloaded from https://www.dovepress.com/ by on 09, 2018.

C. Quantin, M. Abrahamowicz, and T. Moreau, Variation Over Time of the Effects of Prognostic Factors in a Population-based Study of Colon Cancer: Comparison of Statistical Models, American Journal of Epidemiology, vol.150, issue.11, pp.1188-1200, 1999.
DOI : 10.1093/oxfordjournals.aje.a009945

H. Moller, F. Sandin, and D. Robinson, Colorectal cancer survival in socioeconomic groups in England: Variation is mainly in the short term after diagnosis, European Journal of Cancer, vol.48, issue.1, pp.46-53, 2012.
DOI : 10.1016/j.ejca.2011.05.018

H. Charvat, L. Remontet, and N. Bossard, A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates, Statistics in Medicine, vol.21, issue.21, pp.3066-3084, 2016.
DOI : 10.1002/sim.1259

URL : https://hal.archives-ouvertes.fr/hal-02016405

P. Austin, P. Wagner, and J. Merlo, The median hazard ratio: a useful measure of variance and general contextual effects in multilevel survival analysis, Statistics in Medicine, vol.27, issue.4, pp.928-938, 2017.
DOI : 10.1007/s10680-011-9241-2

W. Wynant and M. Abrahamowicz, Impact of the model-building strategy on inference about nonlinear and time-dependent covariate effects in survival analysis, Statistics in Medicine, vol.7, issue.19, pp.3318-3337, 2014.
DOI : 10.1007/978-0-387-77244-8

I. Corazziari, M. Quinn, and R. Capocaccia, Standard cancer patient population for age standardising survival ratios, European Journal of Cancer, vol.40, issue.15, pp.2307-2316, 2004.
DOI : 10.1016/j.ejca.2004.07.002

E. Commission, Why Socio-Economic Inequalities Increase? Facts and Policy Responses in Europe, 2010.

J. Bryere, C. Pornet, O. Dejardin, L. Launay, L. Guittet et al., Correction of misclassification bias induced by the residential mobility in studies examining the link between socioeconomic environment and cancer incidence, Cancer Epidemiology, vol.39, issue.2, pp.256-264, 2015.
DOI : 10.1016/j.canep.2014.12.008

C. Binquet, M. Abrahamowicz, K. Astruc, J. Faivre, C. Bonithon-kopp et al., Flexible statistical models provided new insights into the role of quantitative prognostic factors for mortality in gastric cancer, Journal of Clinical Epidemiology, vol.62, issue.3
DOI : 10.1016/j.jclinepi.2008.06.019

, J Clin Epidemiol, vol.62, issue.3, pp.232-240, 2009.

S. Corm, L. Roche, and J. Micol, Changes in the dynamics of the excess mortality rate in chronic phase-chronic myeloid leukemia over 1990-2007: a population study, Blood, vol.118, issue.16, pp.4331-4337, 2011.
DOI : 10.1182/blood-2011-01-330332

K. Hess and V. Levin, Getting More Out of Survival Data by Using the Hazard Function, Clinical Cancer Research, vol.20, issue.6, pp.1404-1409, 2014.
DOI : 10.1158/1078-0432.CCR-13-2125

M. Mounier, N. Bossard, and L. Remontet, Changes in dynamics of excess mortality rates and net survival after diagnosis of follicular lymphoma or diffuse large B-cell lymphoma: comparison between European population-based data (EUROCARE-5), The Lancet Haematology, vol.2, issue.11, pp.481-491, 2015.
DOI : 10.1016/S2352-3026(15)00155-6

URL : https://hal.archives-ouvertes.fr/hal-02025610

J. Vaupel and A. Yashin, Heterogeneity's ruses: some surprising effects of selection on population dynamics, Am Stat, vol.39, issue.3, pp.176-185, 1985.

W. Sauerbrei, P. Royston, and M. Look, A New Proposal for Multivariable Modelling of Time-Varying Effects in Survival Data Based on Fractional Polynomial Time-Transformation, Biometrical Journal, vol.18, issue.3, pp.453-473, 2007.
DOI : 10.1111/1467-985X.00122

E. Vittinghoff and C. Mcculloch, Relaxing the Rule of Ten Events per Variable in Logistic and Cox Regression, American Journal of Epidemiology, vol.165, issue.6, pp.710-718, 2007.
DOI : 10.1093/aje/kwk052

G. Heinze, C. Wallisch, and D. Dunkler, Variable selection - A review and recommendations for the practicing statistician, Biometrical Journal, vol.101, issue.3, 2018.
DOI : 10.1198/016214506000000735

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.201700067

L. Com-ruelle, P. Dourgnon, F. Jusot, and P. Lengagne, Les problèmes d'alcool en France: quelles sont les populations à risque? [The problems of alcohol in France: what are at-risk populations?, pp.1-6, 2008.

R. Guignard, F. Beck, J. Richard, A. Lermenier, J. Wilquin et al., La consommation de tabac en France en 2014: caractéristiques et évolutions récentes [The use of tobacco in France in 2014: characteristics and recent developments], Évolutions, vol.31, pp.1-6, 2015.

N. Duport, D. Serra, H. Goulard, and J. Bloch, Which factors influence screening practices for female cancer in France?]. Rev Epidemiol Sante Publique, pp.303-313, 2008.

I. Oliveira, G. Molenberghs, C. Demetrio, C. Dias, S. Giolo et al., Quantifying intraclass correlations for count and time-to-event data, Biometrical Journal, vol.16, issue.4, pp.852-867, 2016.
DOI : 10.2307/2061224

H. Goldstein, W. Browne, and J. Rasbash, Partitioning Variation in Multilevel Models, Understanding Statistics, vol.30, issue.4, pp.223-231, 2002.
DOI : 10.1007/BF00170144

URL : http://www.bristol.ac.uk/cmm/team/hg/variance-partitioning.pdf

J. Bryere, C. Pornet, and N. Copin, Assessment of the ecological bias of seven aggregate social deprivation indices, BMC Public Health, vol.56, issue.8, p.86, 2017.
DOI : 10.1136/jech.56.9.669

URL : https://hal.archives-ouvertes.fr/inserm-01438556

A. Diez-roux, Multilevel Analysis in Public Health Research, Annual Review of Public Health, vol.21, issue.1, pp.171-192, 2000.
DOI : 10.1146/annurev.publhealth.21.1.171

URL : https://www.annualreviews.org/doi/pdf/10.1146/annurev.publhealth.21.1.171

A. Sloggett, H. Young, and E. Grundy, The association of cancer survival with four socioeconomic indicators: a longitudinal study of the older population of England and Wales 1981???2000, BMC Cancer, vol.55, issue.1, p.20, 1981.
DOI : 10.1136/jech.55.12.895

S. Singer, M. Bartels, and S. Briest, Socio-economic disparities in long-term cancer survival???10??year follow-up with individual patient data, Supportive Care in Cancer, vol.89, issue.9, pp.1391-1399, 2017.
DOI : 10.1055/s-0029-1241167

K. Skyrud, F. Bray, M. Eriksen, Y. Nilssen, and B. Moller, Regional variations in cancer survival: Impact of tumour stage, socioeconomic status, comorbidity and type of treatment in Norway, International Journal of Cancer, vol.11, issue.9, pp.2190-2200, 2016.
DOI : 10.1186/1471-2288-11-129

, Clinical Epidemiology downloaded from https://www.dovepress.com/ by on 09, 2018.