K. Kurita, Chitosan Chemistry and Pharmaceutical Perspectives Chitin and Chitosan: functional biopolymers from marine crustaceans, Chem. Rev. Mar. Biotechnol, vol.104, issue.8, pp.6017-6084, 2004.

, Chitin and chitosan: Properties and applications, Prog. Polym. Sci, vol.31, pp.603-632, 2006.

J. Mano, V. K. Mourya, N. N. Inamdar, and I. Aranaz, Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications Chitosanmodifications and applications: Opportunities galore, Int. J. Biol. Macromol. React. Funct. Polym, vol.43, issue.68, pp.401-414, 2008.

R. Harris and A. Heras, Chitosan Amphiphilic Derivatives Chemistry and Applications, A New Horizon in Modifications of Chitosan: Syntheses and Applications. Crit. Rev. Ther. Drug 2013, pp.308-330, 2010.

M. D. Cathell, J. C. Szewczyk, C. L. Schauer, J. Yang, Y. Xie et al., Organic Modification of the Polysaccharide Alginate Research progress on chemical modification of alginate: A review Alginate derivatization: A review of chemistry, properties and applications, Alginate: Properties and biomedical applications, pp.61-67, 2010.

J. Sun and H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications, Materials, vol.244, issue.4, pp.1285-1309, 2013.
DOI : 10.1007/12_2011_118

V. L. Campo, D. F. Kawano, D. B. Da-silva-jr, and I. Carvalho, Carrageenans: Biological properties, chemical modifications and structural analysis ??? A review, Carbohydrate Polymers, vol.77, issue.2, pp.167-180, 2009.
DOI : 10.1016/j.carbpol.2009.01.020

C. K. Pillai, W. Paul, and C. P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science, vol.34, issue.7, pp.641-678, 2009.
DOI : 10.1016/j.progpolymsci.2009.04.001

V. K. Mourya, N. N. Inambar, and A. Tiwari, Carboxymethyl Chitosan And Its Applications, Advanced Materials Letters, vol.1, issue.1, pp.11-33, 2010.
DOI : 10.5185/amlett.2010.3108

S. Mine, H. Izawa, Y. Kaneko, and J. Kadokawa, Acetylation of ??-chitin in ionic liquids, Carbohydrate Research, vol.344, issue.16, pp.2263-2265, 2009.
DOI : 10.1016/j.carres.2009.08.004

H. Sashiwa, N. Kawasaki, A. Nakayama, E. Muraki, N. Yamamoto et al., Palladium Adsorbable, and Biodegradable Chitosan Derivatives toward the Chemical Plating on Plastics, pp.1120-1125, 2002.
DOI : 10.1021/bm0200478

H. Ikeda, M. Shimojoh, and J. Yang, Phthaloylated Chitosan as an Essential Precursor for Controlled Chemical Modifications of Chitosan: Synthesis and Evaluation, Polym. J, vol.39, pp.945-952, 2007.

S. Ifuku, T. Miwa, M. Morimoto, and H. Saimoto, Preparation of highly chemoselective N-phthaloyl chitosan in aqueous media, Green Chemistry, vol.91, issue.6, pp.1499-1502, 2011.
DOI : 10.1007/s10973-007-8321-3

H. Sashiwa, N. Kawasaki, A. Nakayama, E. Muraki, and N. Yamamoto, Arvanitoyannis, I

S. Aiba, Chemical modification of chitosan 12: synthesis of organo-soluble chitosan derivatives toward palladium absorbent for chemical plating, Chem. Lett, pp.598-599, 2002.

M. C. Carré, C. Delestre, P. Hubert, and E. Dellacherie, Covalent coupling of a short polyether on sodium alginate: Synthesis and characterization of the resulting amphiphilic derivative, Carbohydrate Polymers, vol.16, issue.4, pp.367-379, 1991.
DOI : 10.1016/0144-8617(91)90055-H

E. Broderick, H. Lyons, T. Pembroke, H. Byrne, B. Murray et al., The characterisation of a novel, covalently modified, amphiphilic alginate derivative, which retains gelling and non-toxic properties, Journal of Colloid and Interface Science, vol.298, issue.1, pp.154-161, 2006.
DOI : 10.1016/j.jcis.2005.12.026

L. Q. Yang, B. F. Zhang, and L. Q. Wen, Amphiphilic cholesteryl grafted sodium alginate derivative: Synthesis and self-assembly in aqueous solution, Carbohydrate Polymers, vol.68, issue.2, pp.218-225, 2007.
DOI : 10.1016/j.carbpol.2006.12.020

V. G. Babak, E. A. Skotnikova, I. G. Lukina, S. Pelletier, and P. Hubert,

, Hydrophobically associating alginate derivatives: Surface tension properties of their mixed aqueous solutions with oppositely charged surfactants, J. Colloid Interf. Sci, vol.225, pp.505-510, 2000.

M. Leonard, P. Hubert, P. Marchal, A. Stequert, C. Castel et al., Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability

J. , C. Interf, S. Sci-pelletier, P. Hubert, and F. Lapicque, , pp.131-139, 2004.

, Amphiphilic derivatives of sodium alginate and hyaluronate: Synthesis and physico-chemical properties of aqueous dilute solutions, Carbohydr. Polym, vol.43, pp.343-349, 2000.

A. L. Kjøniksen, G. T. Nguyen, K. D. Knudsen, and B. Nyström, Altering associations in aqueous solutions of a hydrophobically modified alginate in the presence of ?-cyclodextrin monomers, J. Phys

. B. Chem, F. Vallée, C. Müller, and A. Durand, , pp.190-195, 2006.

C. Kelche, J. Cassel, and M. Leonard, Synthesis and rheological properties of hydrogels based on amphiphilic alginate?amide derivatives, Carbohydr. Res, vol.344, pp.223-228, 2009.

A. J. Kuijpers, G. H. Engbers, P. B. Van-wachem, J. Krijgsveld, and S. A. Zaat, J.; Dankert, J

, Controlled delivery of antibacterial proteins from biodegradable matrices, J. Control. Release, vol.53, pp.235-247, 1998.

N. Bordenave, S. Grelier, and V. Coma, Advances on Selective C-6 Oxidation of Chitosan by TEMPO, Biomacromolecules, vol.9, issue.9, pp.2377-2382, 2008.
DOI : 10.1021/bm800375v

R. A. Muzzarelli, C. Muzzarelli, and A. Cosani, 6-Oxychitins, novel hyaluronan-like regiospecifically carboxylated chitins, Carbohydrate Polymers, vol.39, issue.4, pp.361-367, 1999.
DOI : 10.1016/S0144-8617(99)00027-2

Y. Kato, J. Kaminaga, R. Matsuo, and A. Isogai, TEMPO-mediated oxidation of chitin, regenerated chitin and -acetylated chitosan, Carbohydrate Polymers, vol.58, issue.4, pp.421-426, 2004.
DOI : 10.1016/j.carbpol.2004.08.011

S. H. Yoo, J. S. Lee, S. Y. Park, Y. S. Kim, P. S. Chang et al., Effects of selective oxidation of chitosan on physical and biological properties, International Journal of Biological Macromolecules, vol.35, issue.1-2, pp.27-31, 2005.
DOI : 10.1016/j.ijbiomac.2004.11.004

H. Kong and D. Mooney, Controlling alginate gels degradation utilizing partial oxidation and bimodal molecular weight distribution, Biomaterials, vol.26, pp.2455-2465, 2005.

D. J. Mooney, Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution, Biomacromolecules, vol.5, pp.1720-1727, 2004.

C. G. Gomez, M. Rinaudo, and M. A. Villar, Oxidation of sodium alginate and characterization of the oxidized derivatives, Carbohydrate Polymers, vol.67, issue.3, pp.296-304, 2007.
DOI : 10.1016/j.carbpol.2006.05.025

URL : https://hal.archives-ouvertes.fr/hal-00305590

A. E. De-nooy, D. Capitani, G. Masci, and V. Crescenzi, Ionic Polysaccharide Hydrogels via the Passerini and Ugi Multicomponent Condensations: Synthesis, Behavior and Solid-State NMR Characterization

, Biomacromolecules, vol.1, pp.259-267, 2000.

H. Bu, A. L. Kjøniksen, K. D. Knudsen, and B. Nyström, Rheological and Structural Properties of Aqueous Alginate during Gelation via the Ugi Multicomponent Condensation Reaction, Biomacromolecules, vol.5, issue.4, pp.1470-1479, 2004.
DOI : 10.1021/bm049947+

S. Hirano, K. Nagamura, M. Zhang, S. K. Kim, B. G. Chung et al.,

, Chitosan staple fibers and their chemical modification with some aldehydes, Carbohydr. Polym, vol.38, 1999.

G. K. Moore and G. A. Roberts, Reactions of chitosan: 3. Preparation and reactivity of Schiff's base derivatives of chitosan, International Journal of Biological Macromolecules, vol.3, issue.5, pp.337-340, 1981.
DOI : 10.1016/0141-8130(81)90053-2

H. Sashiwa and Y. Shigemasa, Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins, Carbohydrate Polymers, vol.39, issue.2, pp.127-138, 1999.
DOI : 10.1016/S0144-8617(98)00167-2

, Formation of branched-chain, soluble polysaccharides from chitosan, J. Chem

. Soc, Chem. Commun, pp.1153-1154, 1980.

, Polysaccharide Modifications. 3. Formation of Branched-Chain, Soluble Chitosan Derivatives, Macromolecules, vol.17, pp.272-281, 1984.

H. Sashiwa, Y. Makimura, Y. Shigemasa, and R. Roy, Chemical modification of chitosan: preparation of chitosan???sialic acid branched polysaccharide hybrids, Chemical Communications, issue.11, pp.909-910, 2000.
DOI : 10.1039/b001861i

H. Sashiwa, J. M. Thompson, S. K. Das, Y. Shigemasa, S. Tripathy et al., Chemical Modification of Chitosan:?? Preparation and Lectin Binding Properties of ??-Galactosyl-chitosan Conjugates. Potential Inhibitors in Acute Rejection following Xenotransplantation, Biomacromolecules, vol.1, issue.3, pp.303-305, 2000.
DOI : 10.1021/bm005536r

D. Li, L. Liu, K. Tian, J. Liu, and X. Fan, Synthesis, biodegradability and cytotoxicity of water-soluble isobutylchitosan, Carbohydrate Polymers, vol.67, issue.1, pp.40-45, 2007.
DOI : 10.1016/j.carbpol.2006.04.022

G. Maresh, T. Clausen, G. Lang, and . In, Chitin and chitosan; Skjak-braek

E. , , 1989.

, Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity, Carbohydr. Polym. Carbohydr. Polym, vol.51, issue.69, pp.431-438, 2003.

S. Tokura, N. Nishi, A. Tsutsumi, and O. Somorin, Studies on Chitin VIII. Some Properties of Water Soluble Chitin Derivatives, Polymer Journal, vol.XXV, issue.6, pp.485-489, 1983.
DOI : 10.1016/S0008-6215(00)82336-8

, Terrassin, C. New method for the quaternization of chitosan, Int. J. Biol

M. Sieval, A. B. Thanou, M. Kotze, A. F. Verhoef, J. C. Brussee et al., Preparation and NMR characterization of highly substituted N-trimethylchitosan chloride, pp.105-107, 1986.

. Polym, , pp.157-165, 1998.

D. Snyman, J. H. Hamman, J. S. Kotze, J. E. Rollings, and A. Kotze, The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride, Carbohydrate Polymers, vol.50, issue.2, pp.145-150, 2002.
DOI : 10.1016/S0144-8617(02)00008-5

A. Polnok, G. Borchard, J. C. Verhoef, N. Sarisuta, and H. Junginger, Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride, European Journal of Pharmaceutics and Biopharmaceutics, vol.57, issue.1, 2004.
DOI : 10.1016/S0939-6411(03)00151-6

E. Curti, D. De-britto, and S. P. Campana-filho, Methylation of Chitosan with Iodomethane: Effect of Reaction Conditions on Chemoselectivity and Degree of Substitution, Macromolecular Bioscience, vol.42, issue.10, pp.571-576, 2003.
DOI : 10.1007/s002890050448

D. Colo, G. Burgalassi, S. Zambito, Y. Monti, D. Chetoni et al., Effects of Different N-Trimethyl Chitosans on In Vitro/In Vivo Ofloxacin Transcorneal Permeation, Journal of Pharmaceutical Sciences, vol.93, issue.11, pp.2851-2862, 2004.
DOI : 10.1002/jps.20197

R. J. Verheul, M. Amidi, S. Van-der-wal, E. Van-riet, W. Jiskoot et al., Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan, Biomaterials, vol.29, issue.27, pp.3642-3649, 2008.
DOI : 10.1016/j.biomaterials.2008.05.026

D. Britto, D. Assis, and O. B. , A novel method for obtaining a quaternary salt of chitosan, Carbohydrate Polymers, vol.69, issue.2
DOI : 10.1016/j.carbpol.2006.10.007

. Polym, , pp.305-310, 2007.

Z. Jia, D. Shen, and W. Xu, Synthesis and antibacterial activities of quaternary ammonium salt of chitosan, Carbohydrate Research, vol.333, issue.1, pp.1-6, 2001.
DOI : 10.1016/S0008-6215(01)00112-4

M. Pouladzadeh, M. J. Zohuriaan-mehr, M. Rafiee-tehrani, and R. Xing, Diethylmethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects, Eur. Polym. J, vol.40, pp.1355-1361, 2004.

S. Liu, Z. Zhong, X. Ji, L. Wang, and P. Li, Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan, Carbohydr. Res, vol.342, pp.1329-1332, 2007.

J. Cho, J. Grant, M. Piquette-miller, and C. Allen, Synthesis and Physicochemical and Dynamic Mechanical Properties of a Water-Soluble Chitosan Derivative as a Biomaterial, Biomacromolecules, vol.7, issue.10, pp.2845-2855, 2006.
DOI : 10.1021/bm060436s

T. Xu, M. Xin, M. Li, H. Huang, S. Zhou et al., Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan, Carbohydrate Research, vol.346, issue.15, pp.2445-2450, 2011.
DOI : 10.1016/j.carres.2011.08.002

U. Bhaskar, E. Sterner, A. M. Hickey, A. Onishi, F. Zhang et al., Engineering of routes to heparin and related polysaccharides, Applied Microbiology and Biotechnology, vol.21, issue.1, pp.1-16, 2012.
DOI : 10.1093/glycob/cwr001

D. Beccati, Z. Shriver, A. Naggi, K. Viswanathan, and A. Bisio, Capila, I.; Lansing, J.C

S. Guglieri, B. Fraser, A. Hakim, N. S. Gunay, Z. Zhang et al., Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events, Nat. Biotechnol, vol.26, pp.669-675, 2008.

J. Pan, Y. Qian, X. Zhou, A. Pazandak, S. B. Frazier et al., Oversulfated chondroitin sulfate is not the sole contaminant in heparin, Nature Biotechnology, vol.12, issue.3, pp.203-207, 2010.
DOI : 10.1042/bj2370573

Z. Shriver, A. Naggi, B. Casu, R. J. Linhardt, G. Torri et al., Reply to Oversulfated chondroitin sulfate is not the sole contaminant in heparin, Nat. Biotechnol, vol.28, pp.207-211, 2010.

, FDA) website (http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm112669.h tm, 2013.

K. Senni, J. Pereira, and F. Gueniche, Delbarre-Ladrat, Sinquin, C.; Ratiskol, J.; Godeau, G

M. Helley, D. Colliec-jouault, and S. M. Polysaccharides, A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering, b) Laurienzo, P. Marine Polysaccharides in Pharmaceutical Applications: An Overview, pp.1664-1681, 2010.

R. A. Al-horaniand and U. Desai, Chemical sulfating of small molecules -advances and challenges

, Tetrahedron, vol.66, pp.2907-2918, 2010.

M. R. Feitosa, J. P. Freitas, A. L. De-paula, and R. C. , Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea, Carbohydr. Polym. Int. J. Biol, vol.49, pp.491-498, 2002.

. Macromol, , pp.195-199, 2005.

, Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta), Pharmacol. Res.Z, vol.48, pp.543-549, 2003.

Z. H. Xu and Z. E. Li, Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight, Int. J. Biol. Macromol, vol.38, pp.45-50, 2006.

Q. B. Zhang, H. M. Qi, X. G. Liu, and Z. Li, Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis, Pharmacol. Res, vol.57, pp.67-72, 2008.

R. Jayakumar, N. Nwe, S. Tokura, and H. Tamura, Sulfated chitin and chitosan as novel biomaterials, International Journal of Biological Macromolecules, vol.40, issue.3
DOI : 10.1016/j.ijbiomac.2006.06.021

, Biol. Macromol, vol.40, pp.175-181, 2007.

E. E. Gilbert, The Reactions of Sulfur Trioxide, and Its Adducts, with Organic Compounds., Chemical Reviews, vol.62, issue.6, pp.549-589, 1962.
DOI : 10.1021/cr60220a003

Y. Zou and E. Khor, Preparation of sulfated-chitins under homogeneous conditions, Carbohydrate Polymers, vol.77, issue.3, pp.516-525, 2009.
DOI : 10.1016/j.carbpol.2009.01.031

R. Huang, Y. Du, J. Yang, and L. Fan, Influence of functional groups on the in vitro anticoagulant activity of chitosan sulfate, Carbohydrate Research, vol.338, issue.6, pp.483-489, 2003.
DOI : 10.1016/S0008-6215(02)00505-0

K. Nagasawa, Y. Tohira, Y. Inoue, and N. Tanoura, Reaction between carbohydrates and sulfuric acid, Carbohydrate Research, vol.18, issue.1, pp.95-102, 1971.
DOI : 10.1016/S0008-6215(00)80261-X

G. Vikhoreva, G. Bannikova, P. Stolbushkina, A. Panov, N. Drozd et al.,

L. Gal-'braikh, Carbohydr. Polym, vol.62, pp.327-332, 2005.

C. Zhang, Q. Ping, H. Zhang, and J. Shen, Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol, Carbohydrate Polymers, vol.54, issue.2, pp.137-141, 2003.
DOI : 10.1016/S0144-8617(03)00090-0

S. Hirano, Y. Tanaka, M. Hasegawa, K. Tobetto, and A. Nishioka, Effect of sulfated derivatives of chitosan on some blood coagulant factors, Carbohydrate Research, vol.137, pp.205-215, 1985.
DOI : 10.1016/0008-6215(85)85161-2

A. Gamzazade, A. Sklyar, S. Nasibov, I. Sushkov, A. Shashkov et al., Structural features of sulfated chitosans, Carbohydrate Polymers, vol.34, issue.1-2, pp.113-116, 1997.
DOI : 10.1016/S0144-8617(97)00067-2

J. Je, P. Park, and S. Kim, Prolyl endopeptidase inhibitory activity of chitosan sulfates with different degree of deacetylation, Carbohydrate Polymers, vol.60, issue.4, pp.553-556, 2005.
DOI : 10.1016/j.carbpol.2005.03.007

J. Yang, K. Luo, D. Li, S. Yu, J. Cai et al., Preparation, characterization and in vitro anticoagulant activity of highly sulfated chitosan, International Journal of Biological Macromolecules, vol.52, pp.25-31, 2013.
DOI : 10.1016/j.ijbiomac.2012.09.027

J. Suwan, Z. Zhang, B. Li, P. Vongchan, P. Meepowpan et al.,

B. Premanode, P. Kongtawelert, and R. J. Linhardt, Sulfonation of papain-treated chitosan and mechanism for anticoagulant activity, Carbohydr. Res, vol.344, pp.1190-1196, 2009.

S. Nishimura, H. Kai, K. Shinada, T. Yoshida, S. Tokura et al.,

N. Yamamoto, T. Uryu, and S. Nishimura, Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates, Carbohydr. Res, vol.306, pp.427-433, 1998.

A. Yamagishi, N. Nishi, S. Tokura, K. Kurita, and S. Ishii, An Efficient Method for the Syntheses of Novel Amphiphilic Polysaccharides by Regio-and Thermoselective Modifications of Chitosan, Chem. Lett, pp.1623-1626, 1993.

R. A. Muzzarelli, Modified chitosans carrying sulfonic acid groups, Carbohydrate Polymers, vol.19, issue.4, pp.231-236, 1992.
DOI : 10.1016/0144-8617(92)90074-Z

S. Alban, A. Schauerte, and G. Franz, Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure??????activity relationships of new pullulan sulfates, Carbohydrate Polymers, vol.47, issue.3, pp.267-276, 2002.
DOI : 10.1016/S0144-8617(01)00178-3

H. Ronghua, D. Yumin, and Y. Jianhong, Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives, Carbohydrate Polymers, vol.52, issue.1, pp.19-24, 2003.
DOI : 10.1016/S0144-8617(02)00258-8

I. Freeman, A. Kedem, and S. Cohen, The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins, Biomaterials, vol.29, issue.22, pp.3260-3268, 2008.
DOI : 10.1016/j.biomaterials.2008.04.025

L. Fan, L. Jiang, Y. Xu, Y. Zhou, Y. Shen et al., Synthesis and anticoagulant activity of sodium alginate sulfates, Carbohydrate Polymers, vol.83, issue.4, pp.1797-1803, 2011.
DOI : 10.1016/j.carbpol.2010.10.038

R. Jayakumar, N. Selvamurugan, S. V. Nair, S. Tokura, and H. Tamura, Preparative methods of phosphorylated chitin and chitosan???An overview, International Journal of Biological Macromolecules, vol.43, issue.3, pp.221-225, 2008.
DOI : 10.1016/j.ijbiomac.2008.07.004

N. Nishi, A. Ebina, S. Nishimura, A. Tsutsumi, O. Hasegawa et al., Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization, International Journal of Biological Macromolecules, vol.8, issue.5, pp.311-317, 1986.
DOI : 10.1016/0141-8130(86)90046-2

T. Sakaguchi, T. Hirokoshi, and A. Nakajima, Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate, Agricultural and Biological Chemistry, vol.45, issue.10, pp.2191-2195, 1981.
DOI : 10.1080/00021369.1981.10864862

A. Heras, N. M. Rodriguez, V. M. Ramos, and E. Agullo, N-methylene phosphonic chitosan: a novel soluble derivative, b) Matevosyan, G.L. ; Yukha, Y.S. ; Zavlin, P.M, pp.1-8, 2001.
DOI : 10.1016/S0144-8617(00)00195-8

. Phosphorylation-of-chitosan and . Russ, J. Gen. Chem, vol.73, pp.1725-1728, 2003.

R. Jayakumar, T. Egawa, T. Furuike, S. V. Nair, and H. Tamura, Synthesis, characterization, and thermal properties of phosphorylated chitin for biomedical applications, Polymer Engineering & Science, vol.1, issue.195, pp.844-849, 2009.
DOI : 10.1271/bbb1961.45.2191

R. Jayakumar, H. Nagahama, T. Furuike, and H. Tamura, Synthesis of phosphorylated chitosan by novel method and its characterization, International Journal of Biological Macromolecules, vol.42, issue.4, pp.335-339, 2008.
DOI : 10.1016/j.ijbiomac.2007.12.011

R. Coleman, G. Lawrie, L. Lambert, M. Whittaker, K. Jack et al., Phosphorylation of Alginate: Synthesis, Characterization, and Evaluation of in Vitro Mineralization Capacity, Biomacromolecules, vol.12, issue.4, pp.889-897, 2011.
DOI : 10.1021/bm1011773

A. Bernkop-schnürch, V. Schwarz, and S. Steininger, Polymers with thiol groups: a new generation of mucoadhesive polymers?, Pharmaceutical Research, vol.16, issue.6, pp.876-881, 1999.
DOI : 10.1023/A:1018830204170

A. Bernkop-schnürch, M. Hornof, and D. Guggi, Thiolated chitosans, European Journal of Pharmaceutics and Biopharmaceutics, vol.57, issue.1, pp.9-17, 2004.
DOI : 10.1016/S0939-6411(03)00147-4

F. Sarti, A. Bernkop-schnürch, T. Chitosan, and . Chitosan, Chitosan and Thiolated Chitosan, Adv. Polym. Sci, vol.243, pp.93-110, 2011.
DOI : 10.1007/12_2011_109

A. Bernkop-schnürch, U. Brandt, and A. Clausen, Synthese und in Vitro Evaluierung von Chitosan-Cystein Konjugaten, Sci. Pharm, vol.67, pp.197-208, 1999.

R. Singh, L. Kats, W. A. Blatter, and J. M. Lambert, Thiolated polymers ? thiomers: modification of chitosan with 2-iminothiolane. Int Formation of N-substituted 2-iminothiolanes when amino groups in proteins and peptides are modified by 2- iminithiolane, J. Pharm. Anal. Biochem, vol.260, issue.236, pp.229-237, 1996.

K. Kafedjiiski, A. H. Krauland, M. H. Hoffer, and F. Dosio, Synthesis and in vitro evaluation of a novel thiolated chitosan, Biomaterials, vol.26, issue.7, pp.819-826, 2005.
DOI : 10.1016/j.biomaterials.2004.03.011

P. Brusa, M. Ceruti, G. Grosa, and L. Cattel, Toxin-targeted design for anticancer therapy. I: Synthesis and biological evaluation of new thioimidate heterobifunctional reagents, J. Pharm. Sci, vol.82, pp.506-512, 1993.

C. Samberger, E. Fröhlich, and G. Millotti, Bernkop-Schnürch, A. Chitosan-graft-6-mercaptonicotinic acid: synthesis, characterization, and biocompatibility, Biomacromolecules, vol.10, pp.3023-3027, 2009.

C. Samberger, E. Fröhlich, and D. Sakloetsakun, Bernkop-Schnürch, A. Chitosan-4-mercaptobenzoic acid: synthesis and characterization of a novel thiolated chitosan, J. Mater. Chem, vol.20, pp.2432-2440, 2010.

, J. ; Nevalainen, T. ; Savolainen, J. ; Soininen, P. ; Elomaa, M. ; Safin, R

T. Pakkanen, M. Másson, T. Loftsson, T. Järvinen, R. Maku?ka et al., Synthesis and Characterization of Chitosan N-Betainates Having Various Degrees of Substitution Regioselective grafting of poly(ethylene glycol) onto chitosan through C-6 position of glucosamine units, Macromolecules, vol.37, pp.2784-2789, 2004.

, Carbohydr. Polym, vol.64, pp.319-327, 2006.

S. Nishimura, O. Kohgo, K. Kurita, H. Kuzuhara, and K. Shimada, Chemospecific manipulations of a rigid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications, Macromolecules, vol.24, issue.17, pp.4745-4748, 1991.
DOI : 10.1021/ma00017a003

Y. Nishiyama, M. Shimojoh, and S. Nishimura, Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having ?-mannoside branches, Macromolecules, vol.31, pp.4764-4769, 1998.

K. Kurita, H. Yoshino, K. Yokota, M. Ando, S. Inoue et al., Preparation of tosylchitins as precursors for facile chemical modifications of chitin, Macromolecules, vol.25, issue.14, pp.3786-3790, 1992.
DOI : 10.1021/ma00040a026

K. Kurita, H. Yoshino, S. Nishimura, and S. Ishii, Preparation and biodegradability of chitin derivatives having mercapto groups, Carbohydrate Polymers, vol.20, issue.4, pp.239-245, 1993.
DOI : 10.1016/0144-8617(93)90095-L

K. Kurita, K. Sugita, N. Kodaira, M. Hirakawa, and . J. Yang, Preparation and Evaluation of Trimethylsilylated Chitin as a Versatile Precursor for Facile Chemical Modifications, Biomacromolecules, vol.6, issue.3
DOI : 10.1021/bm049295p

K. Kurita and Y. Yoshida, Umemura, T. Finely selective protections and deprotections of multifunctional chitin and chitosan to synthesize key intermediates for regioselective chemical modifications

, Carbohydr. Polym, vol.81, pp.434-440, 2010.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.36, issue.6, pp.2004-2021, 2001.
DOI : 10.1016/B978-008096518-5.00095-2

D. Kushwaha, P. Dwivedi, S. K. Kuanar, V. K. Tiwari, and R. M. Liskamp, Click Reaction in Carbohydrate Chemistry: Recent Developments and Future Perspective+, Current Organic Synthesis, vol.10, issue.1, pp.90-135, 2011.
DOI : 10.2174/1570179411310010005

C. F. Nostrum and W. Hennink, Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies, Bioconjugate Chem, vol.20, 2001.

C. W. Tornøe, C. Christensen, M. Meldal, V. V. Rostovtsev, L. G. Green et al., Peptidotriazoles on Solid Phase:?? [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides, The Journal of Organic Chemistry, vol.67, issue.9, pp.3057-64, 2002.
DOI : 10.1021/jo011148j

, Chem. Int. Ed, vol.41, pp.2596-2599, 2002.

L. Zhang, X. Chen, P. Xue, H. H. Sun, I. D. Williams et al., Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides, Journal of the American Chemical Society, vol.127, issue.46, pp.15998-15999, 2005.
DOI : 10.1021/ja054114s

N. J. Agard, J. A. Prescher, and C. R. Bertozzi, A Strain-Promoted [3 + 2] Azide???Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems, Journal of the American Chemical Society, vol.126, issue.46, pp.15046-15047, 2004.
DOI : 10.1021/ja044996f

E. Lallana, E. Fernandez-megia, and R. Riguera, Surpassing the Use of Copper in the Click Functionalization of Polymeric Nanostructures: A Strain-Promoted Approach, Journal of the American Chemical Society, vol.131, issue.16, pp.5748-5750, 2009.
DOI : 10.1021/ja8100243

J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang et al., Copper-free click chemistry for dynamic in vivo imaging, Proceedings of the National Academy of Sciences, vol.6, issue.17, pp.16793-16797, 2007.
DOI : 10.1021/ol0493094

S. S. Van-berkel, A. T. Dirks, M. F. Debets, F. L. Van-delft, J. J. Cornelissen et al.,

F. P. Rutjes, Metal-free triazole formation as a tool for bioconjugation, Chem. Bio. Chem, vol.8, pp.1504-1508, 2007.

B. S. Sumerlin and A. P. Vogt, Macromolecular Engineering through Click Chemistry and Other Efficient Transformations, Macromolecules, vol.43, issue.1, pp.1-13, 2010.
DOI : 10.1021/ma901447e

J. Lutz, Copper-Free Azide???Alkyne Cycloadditions: New Insights and Perspectives, Angewandte Chemie International Edition, vol.75, issue.12
DOI : 10.1002/anie.200705365

E. Jewett, J. C. Bertozzi, and C. R. , Cu-free click cycloaddition reactions in chemical biology, Chemical Society Reviews, vol.9, issue.4, pp.2182-2184, 2008.
DOI : 10.1002/aja.1002030302

A. Gress, A. Vlkel, and H. Schlaad, Thio-Click Modification of Poly[2-(3-butenyl)-2-oxazoline], Macromolecules, vol.40, issue.22
DOI : 10.1021/ma071357r

, Macromolecules, vol.40, pp.7928-7961, 2007.

A. Massi and D. Nanni, Thiol???yne coupling: revisiting old concepts as a breakthrough for up-to-date applications, Organic & Biomolecular Chemistry, vol.47, issue.19, pp.3791-3807, 2012.
DOI : 10.1039/c1cc10634a

F. Zhang, B. Bernet, and V. Bonnet, 2-Azido-2-deoxycellulose: Synthesis and 1,3-Dipolar Cycloaddition, Helvetica Chimica Acta, vol.43, issue.4, pp.608-617, 2008.
DOI : 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4

E. Kaiser, R. L. Colescott, C. D. Bossinger, and P. Cook, Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides, Analytical Biochemistry, vol.34, issue.2, pp.595-598, 1970.
DOI : 10.1016/0003-2697(70)90146-6

C. J. Cavender and V. J. Shiner, Trifluoromethanesulfonyl azide. Its reaction with alkyl amines to form alkyl azides, The Journal of Organic Chemistry, vol.37, issue.22, pp.3567-3569, 1972.
DOI : 10.1021/jo00795a052

R. Kulbokaite, G. Ciuta, M. Netopilik, and R. Makuska, N-PEG???ylation of chitosan via ???click chemistry??? reactions, Reactive and Functional Polymers, vol.69, issue.10, pp.771-778, 2009.
DOI : 10.1016/j.reactfunctpolym.2009.06.010

P. Peng, X. Cao, F. Peng, J. Bian, F. Xu et al., Binding cellulose and chitosan via click chemistry: Synthesis, characterization, and formation of some hollow tubes, Journal of Polymer Science Part A: Polymer Chemistry, vol.87, issue.24, pp.5201-5210
DOI : 10.1016/j.carbpol.2011.08.003

E. Lallana, E. Fernandez-megia, and R. Riguera, Surpassing the Use of Copper in the Click Functionalization of Polymeric Nanostructures: A Strain-Promoted Approach, Journal of the American Chemical Society, vol.131, issue.16, pp.5748-5750, 2009.
DOI : 10.1021/ja8100243

S. Ifuku, M. Wada, M. Morimoto, and H. Saimoto, Preparation of highly regioselective chitosan derivatives via ???click chemistry???, Carbohydrate Polymers, vol.85, issue.3, pp.653-657, 2011.
DOI : 10.1016/j.carbpol.2011.03.030

T. Satoh, H. Kano, M. Nakatani, N. Nobuo-sakairi, S. Shinkai et al., 6-Amino-6-deoxy-chitosan. Sequential chemical modifications at the C-6 positions of N-phthaloyl-chitosan and evaluation as a gene carrier, Carbohydrate Research, vol.341, issue.14, pp.2406-2413, 2006.
DOI : 10.1016/j.carres.2006.06.019

Y. Chen, F. Wang, D. Yun, Y. Guo, Y. Ye et al., quaternary ammonium chitosan derivative through a chitosan schiff base with click chemistry, Journal of Applied Polymer Science, vol.126, issue.6, pp.3185-3191, 2013.
DOI : 10.1016/j.foodchem.2010.11.099

G. Zampano, M. Bertoldo, and F. Ciardelli, Defined Chitosan-based networks by C-6-Azide???alkyne ???click??? reaction, Reactive and Functional Polymers, vol.70, issue.5, pp.272-281, 2010.
DOI : 10.1016/j.reactfunctpolym.2010.01.004

J. Jirawutthiwongchai, A. Krause, G. Draeger, and S. Chirachanchai, Chitosan-Oxanorbornadiene: A Convenient Chitosan Derivative for Click Chemistry without Metal Catalyst Problem, ACS Macro Letters, vol.2, issue.3, pp.177-180, 2013.
DOI : 10.1021/mz400006j

A. Krause, A. Kirschning, and G. Dräger, Bioorthogonal metal-free click-ligation of cRGD-pentapeptide to alginate, Organic & Biomolecular Chemistry, vol.53, issue.29, pp.5547-5553, 2012.
DOI : 10.1016/S0022-1139(00)82348-9

A. Lagos and J. Reyes, Grafting onto chitosan. I. Graft copolymerization of methyl methacrylate onto chitosan with Fenton's reagent (Fe2???H2O2) as a redox initiator, Journal of Polymer Science Part A: Polymer Chemistry, vol.26, issue.4, pp.985-991, 1988.
DOI : 10.1002/pola.1988.080260403

X. Feng, Chemical modification of biopolymers-mechanism of model graft copolymerization of chitosan, J

. Biomater, . Sci, K. Polym-kojima, M. Yoshikuni, and T. Suzuki, Tributylborane-initiated grafting of methyl methacrylate onto chitin, J. Appl. Polym. Sci, vol.4, issue.24, pp.557-566, 1979.

M. Yazdani-pedram, A. Lagos, N. Campos, and J. Retuert, Comparison of Redox Initiators Reactivities in the Grafting of Methyl Methacrylate onto Chitin, International Journal of Polymeric Materials, vol.13, issue.1-2, pp.25-37, 1992.
DOI : 10.1002/app.1969.070130803

H. S. Blair, J. Guthrie, T. Law, and P. Turkington, Chitosan and modified chitosan membranes I. Preparation and characterisation, Journal of Applied Polymer Science, vol.33, issue.2, pp.641-656, 1987.
DOI : 10.1002/app.1987.070330226

J. Retuert, Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan, J. Appl. Polym. Sci, vol.63, pp.1321-1326, 1997.

S. Hsu,

, Polym. Degrad. Stab, vol.75, pp.73-83, 2002.

K. Kurita, S. Hashimoto, S. Ishii, and T. Mori, Chitin/poly(methyl methacrylate) hybrid materials

K. Bull-kurita, S. Hashimoto, H. Yoshino, S. Ishii, and S. Nishimura, , pp.681-686, 1996.

, Macromolecules, vol.29, pp.1939-1942, 1996.

K. Kurita, H. Yoshino, S. Nishimura, and S. Ishii, Preparation and biodegradability of chitin derivatives having mercapto groups, Carbohydrate Polymers, vol.20, issue.4, pp.239-245, 1993.
DOI : 10.1016/0144-8617(93)90095-L

Y. Liu, Z. Liu, Y. Zhang, and K. Deng, Graft copolymerizaztion of methyl acrylate onto chitosan initiated by potassium diperiodatocuprate (III), Journal of Applied Polymer Science, vol.30, issue.8, pp.2283-2289, 2003.
DOI : 10.1021/ma970569t

K. Kurita, S. Inoue, K. Yamamura, H. Yoshino, S. Ishii et al., Cationic and radical graft copolymerization of styrene onto iodochitin, Macromolecules, vol.25, issue.14, pp.3791-3794, 1992.
DOI : 10.1021/ma00040a027

K. Kurita, H. Yoshino, K. Yokota, M. Ando, S. Inoue et al., Preparation of tosylchitins as precursors for facile chemical modifications of chitin, Macromolecules, vol.25, issue.14, pp.3786-3790, 1992.
DOI : 10.1021/ma00040a026

L. Ng, J. T. Guthrie, Y. J. Yuan, and H. Zhao, UV-cured natural polymer-based membrane for biosensor application, Journal of Applied Polymer Science, vol.386, issue.3, pp.466-472, 2001.
DOI : 10.1016/0005-2795(75)90259-7

V. Singh, D. N. Tripathi, A. Tiwari, and R. Sanghi, Microwave promoted synthesis of chitosan-graft-poly(acrylonitrile), Journal of Applied Polymer Science, vol.54, issue.4, pp.820-825, 2005.
DOI : 10.1002/app.21245

L. Pengfei, Z. Maolin, and W. Jilan, Study on radiation-induced grafting of styrene onto chitin and chitosan, Radiation Physics and Chemistry, vol.61, issue.2
DOI : 10.1016/S0969-806X(00)00389-3

. Radiat, . Phys, D. K. Singh, A. R. Ray, D. K. Singh et al., Graft copolymerization of 2- hydroxyethylmethacrylate onto chitosan films and their blood compatibility Radiation-induced grafting of N,N?-dimethylaminoethylmethacrylate onto chitosan films Study of radiation-induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution, J. Appl. Polym. Sci. J. Appl. Polym. Sci. He, Y.; Bin, L J, vol.61, issue.66, pp.149-153, 1994.

, Polym. Sci, vol.90, pp.2855-2860, 2003.

X. Qu, A. Wirsén, and A. Albertsson, Structural change and swelling mechanism of pH-sensitive hydrogels based on chitosan andD,L-lactic acid, Journal of Applied Polymer Science, vol.17, issue.13, pp.3186-3192, 1999.
DOI : 10.1016/0142-9612(96)00073-7

H. Feng and C. Dong, Synthesis and characterization of phthaloyl-chitosan-g-poly(l-lactide) using an organic catalyst, Carbohydrate Polymers, vol.70, issue.3, pp.258-264, 2007.
DOI : 10.1016/j.carbpol.2007.04.004

T. W. Chung, J. Yang, T. Akaike, K. Y. Cho, J. W. Nah et al., Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment, Biomaterials, vol.23, issue.14, pp.2827-2834, 2002.
DOI : 10.1016/S0142-9612(01)00399-4

D. W. Jenkins and S. M. Hudson, Review of Vinyl Graft Copolymerization Featuring Recent Advances toward Controlled Radical-Based Reactions and Illustrated with Chitin/Chitosan Trunk Polymers, Chem. Rev

K. Kurita, S. Iwawaki, S. Ishii, S. Nishimura, and J. Salamone, Introduction of poly(L-alanine) side chains into chitin as versatile spacer arms having a terminal free amino group and immobilization of nadh active sites, Journal of Polymer Science Part A: Polymer Chemistry, vol.30, issue.4, pp.3245-3274, 1992.
DOI : 10.1002/pola.1992.080300421

S. Detchprohm, K. Aoi, and M. Okada, Synthesis of a Novel Chitin Derivative Having Oligo(?-caprolactone)

, Side Chains in Aqueous Reaction Media, Macromol. Chem. Phys, vol.202, pp.3560-3570, 2001.

K. Aoi, A. Takasu, and M. Okada, Synthesis of novel chitin derivatives having poly

K. Aoi, A. Takasu, and M. Okada, Macromolecules, vol.30, issue.20, pp.3835-3844, 1994.
DOI : 10.1021/ma970569t

K. Aoi, A. Takasu, M. Okada, and S. Tsuge, Miscibility of poly(vinyl chloride) with chitin derivatives having poly(2-methyl-2-oxazoline) side chains, Macromolecular Rapid Communications, vol.16, issue.1, pp.53-58, 1995.
DOI : 10.1002/marc.1995.030160110

H. Ohtani, K. Aoi, A. Takasu, and M. Okada, Characterization of Chitin-Based Polymer Hybrids by Temperature- Programmed Analytical Pyrolysis Techniques. 1. Chitin-graft-poly(2-methyl-2-oxazoline)/Poly

, Blends. Macromolecules, vol.30, pp.4030-4037, 1997.

K. Aoi, A. Takasu, M. Okada, and T. Imae, Synthesis and assembly of novel chitin derivatives having amphiphilic polyoxazoline block copolymer as a side chain, Macromolecular Chemistry and Physics, vol.200, issue.5, pp.1112-1120, 1999.
DOI : 10.1002/(SICI)1521-3935(19990501)200:5<1112::AID-MACP1112>3.0.CO;2-3

S. Yoshikawa, T. Takayama, and N. Tsubokawa, Grafting reaction of living polymer cations with amino groups on chitosan powder, Journal of Applied Polymer Science, vol.68, issue.11, pp.1883-1889, 1998.
DOI : 10.1002/(SICI)1097-4628(19980613)68:11<1883::AID-APP21>3.0.CO;2-U

G. Odian, Principles of Polymerization, 2004.
DOI : 10.1002/047147875X

N. Gorocheva, R. Kulbokaite, R. Makuska, and R. Judkenas, Synthesis and study of chitosan and poly(ethylene glycol) graft copolymers containing triazine moiety, Chemija, vol.15, pp.22-27, 2004.

N. Gorochovceva, Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers, European Polymer Journal, vol.40, issue.4, pp.685-691, 2004.
DOI : 10.1016/j.eurpolymj.2003.12.005

T. Ouchi, H. Nishizawa, and Y. Ohya, Aggregation phenomenon of PEG-grafted chitosan in aqueous solution, Polymer, vol.39, issue.21, pp.5171-5175, 1998.
DOI : 10.1016/S0032-3861(97)10020-9

H. Saito, X. Wu, J. M. Harris, and A. S. Hoffman, Graft copolymers of poly(ethylene glycol) (PEG) and chitosan, Macromolecular Rapid Communications, vol.18, issue.7, pp.547-550, 1997.
DOI : 10.1002/marc.1997.030180703

J. M. Harris, E. C. Struck, M. G. Case, M. S. Paley, and M. Yalpani, J. M

, Synthesis and characterization of poly(ethylene glycol) derivatives, J. Polym. Sci. Polym. Chem. Ed, vol.22, pp.341-352, 1984.

J. M. Harris and M. R. Sedaghat-herati, United States Patent: 5252714 -Preparation and use of polyethylene glycol propionaldehyde, 1993.

M. D. Bentley, M. J. Roberts, and J. M. Harris,

, acetaldehyde hydrate generated in situ: Applications to chitosan and lysozyme, J. Pharm. Sci, vol.87, pp.1446-1449, 1998.

S. S. Silva, S. M. Menezes, and R. B. Garcia, Synthesis and characterization of polyurethane-g-chitosan, European Polymer Journal, vol.39, issue.7
DOI : 10.1016/S0014-3057(03)00013-2

, Eur. Polym. J, vol.39, pp.1515-1519, 2003.

Y. Kawamura, M. Mitsuhashi, H. Tanibe, and H. Yoshida, Adsorption of metal ions on polyaminated highly porous chitosan chelating resin, Industrial & Engineering Chemistry Research, vol.32, issue.2, pp.386-391, 1993.
DOI : 10.1021/ie00014a015

A. S. Hoffman and G. Chen, Graft copolymers of PEO-PPO-PEO triblock polyethers on bioadhesive polymer backbones: Synthesis and properties, Polym Prepr, vol.38, pp.524-525, 1997.

D. K. Kweon, Preparation and characteristics of chitosan-g-PDMS copolymer, Polymer Bulletin, vol.41, issue.6, pp.645-651, 1998.
DOI : 10.1007/s002890050413

I. Y. Kim, S. J. Kim, M. Shin, Y. M. Lee, D. Shin et al., pH- and thermal characteristics of graft hydrogels based on chitosan and poly(dimethylsiloxane), Journal of Applied Polymer Science, vol.14, issue.13, pp.2661-2666, 2002.
DOI : 10.1016/0142-9612(93)90204-F

S. B. Shah, C. P. Patel, and H. C. Trivedi, Fenton's reagent-initiated graft copolymerization of acrylonitrile onto sodium alginate, Journal of Applied Polymer Science, vol.51, issue.8, pp.1421-1426, 1994.
DOI : 10.1002/app.1994.070510809

H. C. Trivedi, Kinetics and reaction mechanism of fenton's-reagent-initiated graft copolymerization of acrylonitrile onto sodium alginate, J. Appl. Polym. Sci, vol.52, pp.857-860, 1994.

S. N. Pawar and K. J. Edgar, Alginate derivatization: A review of chemistry, properties and applications, Biomaterials, vol.33, issue.11, pp.3279-3305, 2012.
DOI : 10.1016/j.biomaterials.2012.01.007

S. B. Shah, C. P. Patel, and H. C. Trivedi, Ceric-induced grafting of acrylate monomers onto sodium alginate, Carbohydrate Polymers, vol.26, issue.1, pp.61-67, 1995.
DOI : 10.1016/0144-8617(95)98836-6

N. Is?klan and F. Kursun, Synthesis and characterization of graft copolymer of sodium alginate and poly(itaconic acid) by the redox system, Polymer Bulletin, vol.44, issue.2, pp.1065-1084, 2013.
DOI : 10.1016/j.cep.2005.01.005

N. Is?klan, F. Kursun, and M. Inal, Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide, Carbohydrate Polymers, vol.79, issue.3, pp.665-672, 2010.
DOI : 10.1016/j.carbpol.2009.09.021

M. Sadeghi, G. Nahid, and S. Fatemeh, Optimization of Synthetic Conditions of a Novel Graft Copolymer Based on Alginate, Eur. J. Sci. Res, vol.64, pp.587-597, 2011.

X. Shi, W. Wang, Y. Kang, and A. Wang, -St)/APT, Journal of Applied Polymer Science, vol.9, issue.3, pp.1822-1832, 2012.
DOI : 10.1021/bm800594f

S. Hua, A. Wang, W. Wang, and A. Wang, Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent, Carbohydrate Polymers, vol.75, issue.1, pp.79-84, 2009.
DOI : 10.1016/j.carbpol.2008.06.013

A. Sand, M. Yadav, and K. Behari, Synthesis and characterization of alginate-g-vinyl sulfonic acid with a potassium peroxydiphosphate/thiourea system, Journal of Applied Polymer Science, vol.33, issue.6, pp.3685-3694, 2010.
DOI : 10.1007/978-3-7091-6542-3_11

M. Yadav, D. K. Mishra, A. Sand, and K. Behari, Modification of alginate through the grafting of 2-acrylamidoglycolic acid and study of physicochemical properties in terms of swelling capacity, metal ion sorption, flocculation and biodegradability, Carbohydrate Polymers, vol.84, issue.1, pp.83-89, 2011.
DOI : 10.1016/j.carbpol.2010.10.065

A. Sand, M. Yadav, D. K. Mishra, and K. Behari, Modification of alginate by grafting of

, pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation, Carbohydr. Polym, vol.80, pp.1147-1154, 2010.

Y. H. Liu, Y. Li, L. Yang, Y. Liu, and L. Bai, Graft copolymerization of methyl acrylate onto sodium alginate initiated by potassium diperiodatocuprate(III). Polymery, pp.37-42, 2005.

G. Sen, R. P. Singh, and S. Pal, Microwave-initiated synthesis of polyacrylamide grafted sodium alginate: Synthesis and characterization, Journal of Applied Polymer Science, vol.26, issue.1, pp.63-71, 2010.
DOI : 10.3390/molecules13030490

M. Sorour, N. A. Moneem, H. A. Talaat, H. Shalaan, and S. E. Marsafy, Characterization of hydrogel synthesized from natural polysaccharides blend grafted acrylamide using microwave (MW) and ultraviolet (UV) techniques. Starch -Stärke 2013, pp.172-178

M. Z. Mollah, M. A. Khan, M. A. Hoque, and A. Aziz, Studies of physico-mechanical properties of photo-cured sodium alginate with silane monomer, Carbohydrate Polymers, vol.72, issue.2, pp.349-355, 2008.
DOI : 10.1016/j.carbpol.2007.09.001

H. K. Ju, S. Y. Kim, and Y. Lee, M. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels compose dog alginate and poly(N-isopolyacrylamide) Polymer, pp.6851-6857, 2001.

V. D. Athawale and M. P. Padwaldesai, Free radical graft copolymerization of methacrylamide onto agar, European Polymer Journal, vol.35, issue.7
DOI : 10.1016/S0014-3057(98)00200-6

. Eur, . J. Polym, V. D. Athawale, and M. P. Padwaldesai, Copolymerization of methacrylic acid with agar using Ce+4 as initiator, J. Polym. Mater, vol.35, issue.17, pp.1237-1243, 1999.

K. Prasad, G. Mehta, R. Meena, and A. K. Siddhanta, Hydrogel-forming agar-graft-PVP and ??-carrageenan-graft-PVP blends: Rapid synthesis and characterization, Journal of Applied Polymer Science, vol.68, issue.327, pp.3654-3663, 2006.
DOI : 10.1016/B978-0-08-023936-1.50032-0

G. U. Rani, S. Mishra, G. Sen, U. Jha, and G. Sen, Polyacrylamide grafted Agar: Synthesis and applications of conventional and microwave assisted technique, Carbohydrate Polymers, vol.90, issue.2, pp.784-791
DOI : 10.1016/j.carbpol.2012.05.069

G. U. Rani and S. Sinha, Microwave assisted synthesis of polyacrylamide grafted agar (Ag-g-PAM) and its application as flocculant for wastewater treatment, Int. J. Biol. Macromol, vol.49, pp.591-598, 2011.

A. Pourjavadi, A. M. Harzandi, and H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, European Polymer Journal, vol.40, issue.7, pp.1363-1370, 2004.
DOI : 10.1016/j.eurpolymj.2004.02.016

A. Pourjavadi, S. Barzegar, and F. Zeidabadi, Synthesis and properties of biodegradable hydrogels of ??-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems, Reactive and Functional Polymers, vol.67, issue.7, pp.644-654, 2007.
DOI : 10.1016/j.reactfunctpolym.2007.04.007

D. K. Mishra, J. Tripathy, and K. Behari, Synthesis of graft copolymer (k-carrageenan-g-N,Ndimethylacrylamide ) and studies of metal ion uptake, swelling capacity and flocculation properties

. Polym, , pp.524-534, 2008.

J. Tripathy, V. S. Pandey, and K. Behari, Synthesis, characterization and applications of graft copolymer (?-carrageenan-g-vinylsulfonic acid) Physicochemical properties, characterization and application, Synthesis of graft copolymer, pp.826-832, 2012.

M. M. Mishra, M. Yadav, A. Sand, J. Tripathy, and K. Behari, Water soluble graft copolymer (??-carrageenan-g-N-vinyl formamide): Preparation, characterization and application, Carbohydrate Polymers, vol.80, issue.1, pp.235-241, 2010.
DOI : 10.1016/j.carbpol.2009.11.009

M. M. Mishra, A. Sand, D. K. Mishra, M. Yadav, and K. Behari, Free radical graft copolymerization of N-vinyl-2-pyrrolidone onto k-carrageenan in aqueous media and applications, Carbohydrate Polymers, vol.82, issue.2, pp.424-431, 2010.
DOI : 10.1016/j.carbpol.2010.04.080

H. L. El-mohdy and H. A. El-rehim, Radiation-induced kappa carrageenan/acrylic acid graft-copolymers and their application as catalytic reagent for sucrose hydrolysis, Chemical Engineering Journal, vol.145, issue.1, pp.154-159, 2008.
DOI : 10.1016/j.cej.2008.08.034

E. Furusaki, Y. Ueno, N. Sakairi, N. Nishi, and S. Tokura, Facile preparation and inclusion ability of a chitosan derivative bearing carboxymethyl-??-cyclodextrin, Carbohydrate Polymers, vol.29, issue.1, pp.29-34, 1996.
DOI : 10.1016/0144-8617(95)00133-6

N. Aoki, M. Nishikawa, and K. Hattori, Synthesis of chitosan derivatives bearing cyclodextrin and adsorption of p-nonylphenol and bisphenol A, Carbohydrate Polymers, vol.52, issue.3, pp.219-223, 2003.
DOI : 10.1016/S0144-8617(02)00308-9

T. Tojima, H. Katsura, S. Han, F. Tanida, N. Nishi et al., Preparation of an ?-cyclodextrin-linked chitosan derivative via reductive amination strategy, Journal of Polymer Science Part A: Polymer Chemistry, vol.36, issue.11, pp.1965-1968, 1998.
DOI : 10.1002/(SICI)1099-0518(199808)36:11<1965::AID-POLA33>3.0.CO;2-A

, Novel synthesis of a water-soluble cyclodextrin-polymer having a chitosan skeleton, Polymer, vol.39, pp.5261-5263, 1998.

M. Prabaharan and J. Mano, Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices, Carbohydrate Polymers, vol.63, issue.2, pp.153-166, 2006.
DOI : 10.1016/j.carbpol.2005.08.051

L. G. Wade, In Organic Chemistry, pp.822-836, 1999.

B. Martel, M. Devassine, G. Crini, M. Weltrowski, M. Bourdonneau et al., Preparation and sorption properties of a ?-cyclodextrin-linked chitosan derivative, Journal of Polymer Science Part A: Polymer Chemistry, vol.69, issue.1, pp.169-176, 2001.
DOI : 10.1002/(SICI)1097-4628(19980815)69:7<1419::AID-APP17>3.0.CO;2-O

S. Chen and Y. Wang, Study on ?-cyclodextrin grafting with chitosan and slow release of its inclusion complex with radioactive iodine, Journal of Applied Polymer Science, vol.25, issue.10, pp.2414-2421, 2001.
DOI : 10.1002/app.1980.070250502

X. Zhang, Y. Wang, and Y. Yi, Synthesis and characterization of grafting ?-cyclodextrin with chitosan, Journal of Applied Polymer Science, vol.28, issue.3
DOI : 10.1021/ac60111a017

, Appl. Polym. Sci, vol.94, pp.860-864, 2004.

M. A. Gaffar, S. M. El-rafie, and K. El-tahlawy, Preparation and utilization of ionic exchange resin via graft copolymerization of ??-CD itaconate with chitosan, Carbohydrate Polymers, vol.56, issue.4, pp.387-396, 2004.
DOI : 10.1016/j.carbpol.2004.01.007

C. Peng, Y. Wang, and Y. Tang, Synthesis of crosslinked chitosan-crown ethers and evaluation of these products as adsorbents for metal ions, Journal of Applied Polymer Science, vol.70, issue.3, pp.501-506, 1998.
DOI : 10.1002/(SICI)1097-4628(19981017)70:3<501::AID-APP11>3.0.CO;2-3

X. Tang, S. Tan, and Y. Wang, Study of the synthesis of chitosan derivatives containing benzo-21-crown-7 and their adsorption properties for metal ions, Journal of Applied Polymer Science, vol.71, issue.9, pp.1886-1891, 2002.
DOI : 10.1002/(SICI)1097-4628(19990321)71:12<2069::AID-APP17>3.0.CO;2-S

L. Wan, Y. Wang, and S. Qian, Study on the adsorption properties of novel crown ether crosslinked chitosan for metal ions, Journal of Applied Polymer Science, vol.16, issue.1, pp.29-34, 2002.
DOI : 10.1021/ja00778a003

S. Ding, X. Zhang, X. Feng, Y. Wang, S. Ma et al., Synthesis of N,N???-diallyl dibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions, Reactive and Functional Polymers, vol.66, issue.3
DOI : 10.1016/j.reactfunctpolym.2005.08.008

. P. Funct, X. Zhang, S. Ding, Y. Wang, X. Feng et al., Synthesis and adsorption properties of metal ions of novel azacrown ether crosslinked chitosan, J. Appl. Polym. Sci, vol.66, issue.100, pp.357-363, 2006.

A. A. Radwan, F. K. Alanazi, and I. A. Alsarra, Microwave Irradiation-Assisted Synthesis of a Novel Crown Ether Crosslinked Chitosan as a Chelating Agent for Heavy Metal Ions (M+n), Molecules, vol.15, issue.9, pp.6257-6268, 2010.
DOI : 10.3390/molecules15096257

M. Tabakci and M. Yilmaz, Synthesis of a chitosan-linked calix[4]arene chelating polymer and its sorption ability toward heavy metals and dichromate anions, Bioresource Technology, vol.99, issue.14, pp.6642-6645, 2008.
DOI : 10.1016/j.biortech.2007.11.066

W. Pluemsab, N. Sakairi, and T. Furuike, Synthesis and inclusion property of ??-cyclodextrin-linked alginate, Polymer, vol.46, issue.23, pp.9778-9783, 2005.
DOI : 10.1016/j.polymer.2005.08.005

M. Wilchek and W. B. Jakoby, [1] The literature on affinity chromatography, Methods Enzymol. B, vol.34, pp.3-10, 1974.
DOI : 10.1016/S0076-6879(74)34004-9

B. Blanco-fernandez, M. Lopez-viota, A. Concheiro, and C. Alvarez-lorenzo, Synergistic performance of cyclodextrin???agar hydrogels for ciprofloxacin delivery and antimicrobial effect, Carbohydrate Polymers, vol.85, issue.4, pp.765-774, 2011.
DOI : 10.1016/j.carbpol.2011.03.042

R. Bar, A new cyclodextrin-agar medium for surface cultivation of microbes on lipophilic substrates, Applied Microbiology and Biotechnology, vol.17, issue.4
DOI : 10.1007/BF00903785

, Microbiol. Biotechnol, vol.32, pp.470-472, 1990.

N. Tsubokawa and T. Takayama, Surface modification of chitosan powder by grafting of ???dendrimer-like??? hyperbranched polymer onto the surface, Reactive and Functional Polymers, vol.43, issue.3, pp.341-350, 2000.
DOI : 10.1016/S1381-5148(99)00065-6

H. Sashiwa, Y. Shigemasa, and R. Roy, Chemical Modification of Chitosan, vol.3

, Sialic Acid Dendrimer Hybrid with Tetraethylene Glycol Spacer, Macromolecules, vol.33, pp.6913-6915, 2000.

H. Sashiwa, Y. Shigemasa, and R. Roy, Chemical Modification of Chitosan. 10.1 Synthesis of Dendronized Chitosan-Sialic Acid Hybrid Using Convergent Grafting of Preassembled Dendrons Built on Gallic Acid and

T. Sashiwa, H. Shigemasa, and Y. , Macromolecules, pp.3905-3909, 2001.

, Highly Convergent Synthesis of Dendrimerized Chitosan-Sialic Acid Hybrid1, Macromolecules, vol.34, p.3211, 2001.

H. Sashiwa, Y. Shigemasa, R. Roy, H. Sashiwa, Y. Shigemasa et al., Chemical modification of chitosan 8: preparation of chitosan???dendrimer hybrids via short spacer, Carbohydrate Polymers, vol.47, issue.2, pp.191-199, 2002.
DOI : 10.1016/S0144-8617(01)00166-7

R. Qu, C. Sun, C. Ji, C. Wang, H. Chen et al., Preparation and metal-binding behaviour of chitosan functionalized by ester- and amino-terminated hyperbranched polyamidoamine polymers, Carbohydrate Research, vol.343, issue.2, pp.267-273, 2008.
DOI : 10.1016/j.carres.2007.10.032

K. Kurita, M. Kanari, Y. Koyama, and K. Kurita, Studies on chitin. Polym. Bull, vol.14, pp.511-514, 1985.

A. Yoshida and Y. Koyama, Studies on chitin. 13 New polysaccharide/polypeptide hybrid materials based on chitin and poly(.gamma.-methyl L-glutamate), Macromolecules, vol.21, pp.1579-1583, 1988.

T. Chung, Y. Lu, S. Wang, Y. Lin, and S. Chu, Growth of human endothelial cells on photochemically grafted Gly???Arg???Gly???Asp (GRGD) chitosans, Growth of human endothelial cells on photochemically grafted Gly?Arg?Gly?Asp (GRGD) chitosans, pp.4803-4809, 2002.
DOI : 10.1016/S0142-9612(02)00231-4

Y. Suzuki, M. Tanihara, K. Suzuki, A. Saitou, W. Sufan et al., Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinductionin vivo, Journal of Biomedical Materials Research, vol.264, issue.3, pp.405-409, 2000.
DOI : 10.1126/science.7512751

H. Zhu, J. Ji, R. Lin, C. Gao, L. Feng et al., Surface engineering of poly(dl-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis, Biomaterials, vol.23, issue.15, pp.3141-3148, 2002.
DOI : 10.1016/S0142-9612(02)00058-3

K. B. Fonseca, S. J. Bidarra, M. J. Oliveira, P. L. Granja, and C. C. Barrias, Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments, Acta Biomaterialia, vol.7, issue.4, pp.1674-1682, 2011.
DOI : 10.1016/j.actbio.2010.12.029

S. Bubenikova, I. Stancu, L. Kalinovska, E. Schacht, and E. Lippens,

M. Santin, M. Amblard, and J. Martinez, Chemoselective cross-linking of alginate with thiol-terminated peptides for tissue engineering applications, Carbohydr. Polym, vol.88, pp.1239-1250, 2012.

M. D. Oza, K. Prasad, A. K. Siddhanta, and A. Siddhanta, One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan, Carbohydrate Research, vol.357, pp.23-31, 2012.
DOI : 10.1016/j.carres.2012.05.016

, Facile synthesis of fluorescent polysaccharides: Cytosine grafted agarose and ?-carrageenan, Carbohydr. Polym, vol.2012, issue.87, pp.1971-1979

J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas et al., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, European Journal of Pharmaceutics and Biopharmaceutics, vol.57, issue.1, pp.19-34, 2004.
DOI : 10.1016/S0939-6411(03)00161-9

T. K. Giri, A. Thakur, A. Alexander, H. Badwaik, D. K. Tripathi et al., Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications A review of chitin and chitosan applications, Acta Pharm. Sin. B Chem. Soc. Rev. React. Funct. Polym, vol.2, issue.46, pp.439-449, 2000.

D. J. Mooney, Alginate Hydrogels as Biomaterials, Macromol. Biosci.. Hydrogels for Tissue Engineering. Chem. Rev, vol.6, issue.101, pp.623-633, 2001.

D. Pozzo, A. Vanini, L. Fagnoni, M. Guerrini, M. De-benedittis et al.,

, Preparation and characterization of poly(ethylene glycol)-crosslinked reacetylated chitosans Synthesis and properties of semi-interpenetrating polymer networks composed of ?-chitin and poly(ethylene glycol) macromer, Carbohydr. Polym. Polymer, vol.42, issue.36, pp.201-206, 1995.

V. Crescenzi, G. Paradossi, P. Desideri, M. Dentini, F. Cavalieri et al., New hydrogels based on carbohydrate and on carbohydrate-synthetic polymer networks, Polymer Gels and Networks, vol.5, issue.3, pp.225-239, 1997.
DOI : 10.1016/S0966-7822(96)00051-2

V. Crescenzi, D. Imbriaco, C. L. Velàsquez, M. Dentini, and A. Ciferri, Novel types of polysaccharidic assemblies, Macromolecular Chemistry and Physics, vol.196, issue.9, pp.2873-2880, 1995.
DOI : 10.1002/macp.1995.021960912

S. S. Kim, H. W. Kim, S. H. Yuk, S. Y. Oh, P. K. Pak et al., Blood and cell compatibility of gelatin-carrageenan mixtures cross-linked by glutaraldehyde, Biomaterials, vol.17, issue.8, pp.813-821, 1996.
DOI : 10.1016/0142-9612(96)81419-0

K. Prasad and A. K. Siddhanta, Development of a stable hydrogel network based on agar?kappa-carrageenan blend cross-linked with genipin. Food Hydrocoll, pp.497-509, 2009.

V. Verma, P. Verma, S. Kar, P. Ray, and A. R. Ray, Fabrication of agar-gelatin hybrid scaffolds using a novel entrapment method for in vitro tissue engineering applications, Biotechnology and Bioengineering, vol.20, issue.2, pp.392-400, 2007.
DOI : 10.1002/jbm.a.30237

B. J. Dekosky, N. H. Dormer, G. C. Ingavle, C. H. Roatch, J. Lomakin et al., Hierarchically Designed Agarose and Poly(Ethylene Glycol) Interpenetrating Network Hydrogels for Cartilage Tissue Engineering, Tissue Engineering Part C: Methods, vol.16, issue.6, pp.1533-1542, 2010.
DOI : 10.1089/ten.tec.2009.0761

T. Vermonden, J. Malda, R. Censi, W. J. Dhert, F. Alhaique et al., In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications, Avci, E. N. Radiation synthesis of poly, pp.1627-1633, 2011.

, carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests, J. Biomed

. Mater and . Res, , pp.187-196, 2005.

R. Jing, Z. Yanqun, L. Jiuqiang, and H. Hongfei, Radiation synthesis and characteristic of IPN hydrogels composed of poly(diallyldimethylammonium chloride) and Kappa-Carrageenan, Radiation Physics and Chemistry, vol.62, issue.2-3, pp.277-281, 2001.
DOI : 10.1016/S0969-806X(01)00186-4

J. Berger, M. Reist, J. M. Mayer, O. Felt, and R. Gurny, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications, European Journal of Pharmaceutics and Biopharmaceutics, vol.57, issue.1, pp.35-52, 2004.
DOI : 10.1016/S0939-6411(03)00160-7

H. Liang, H. Sung, B. S. Rao, and K. V. Murthy, In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant Preparation and In Vitro Evaluation of Chitosan Matrices Cross-Linked by Formaldehyde Vapors, Biomaterials, vol.2310, pp.181-1911081, 2002.

O. Hosoya, S. Taoka, T. Seki, T. Kawaguchi, K. Sugibayashi et al., Relationship between Solubility of Chitosan in Alcoholic Solution and Its Gelation, Chem. Pharm. Bull, vol.47, pp.1044-1046, 1999.

D. Thacharodi and K. P. Rao, Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride, Biomaterials, vol.16, issue.2, pp.145-148, 1995.
DOI : 10.1016/0142-9612(95)98278-M

S. Klug, H. Merker, and R. Jäckh, Effects of ethylene glycol and metabolites on in vitro development of rat embryos during organogenesis, Toxicology in Vitro, vol.15, issue.6, pp.635-642, 2001.
DOI : 10.1016/S0887-2333(01)00083-2