E. Schipani, C. Maes, G. Carmeliet, and G. Semenza, Regulation of Osteogenesis-Angiogenesis Coupling by HIFs and VEGF, Journal of Bone and Mineral Research, vol.24, issue.8, pp.1347-53, 2009.
DOI : 10.1359/jbmr.090602

B. Sacchetti, A. Funari, S. Michienzi, D. Cesare, S. Piersanti et al., Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment, Cell, vol.131, issue.2, pp.324-360, 2007.
DOI : 10.1016/j.cell.2007.08.025

C. Maes, T. Kobayashi, M. Selig, S. Torrekens, S. Roth et al., Osteoblast Precursors, but Not Mature Osteoblasts, Move into Developing and Fractured Bones along with Invading Blood Vessels, Developmental Cell, vol.19, issue.2, pp.329-373, 2010.
DOI : 10.1016/j.devcel.2010.07.010

L. Ding and S. Morrison, Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches, Nature, vol.495, issue.7440, pp.231-236, 2013.
DOI : 10.1182/blood-2004-01-0272

M. Kiel, O. Yilmaz, T. Iwashita, C. Terhorst, and S. Morrison, SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells, Cell, vol.121, issue.7, pp.1109-1130, 2005.
DOI : 10.1016/j.cell.2005.05.026

K. Zhu, H. Jiao, S. Li, H. Cao, D. Galson et al., ATF4 promotes bone angiogenesis by increasing vegf expression and release in the bone environment, Journal of Bone and Mineral Research, vol.469, issue.11, pp.1870-1884, 2013.
DOI : 10.1007/s11999-011-1865-3

G. Karsenty, Transcriptional Control of Skeletogenesis, Annual Review of Genomics and Human Genetics, vol.9, issue.1, pp.183-96, 2008.
DOI : 10.1146/annurev.genom.9.081307.164437

X. Yang, K. Matsuda, P. Bialek, S. Jacquot, H. Masuoka et al., ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology, Cell, vol.117, issue.3, pp.387-98, 2004.
DOI : 10.1016/S0092-8674(04)00344-7

F. Elefteriou, M. Benson, H. Sowa, M. Starbuck, X. Liu et al., ATF4 mediation of NF1 functions in osteoblast reveals??a nutritional basis for congenital skeletal dysplasiae, Cell Metabolism, vol.4, issue.6, pp.441-51, 2006.
DOI : 10.1016/j.cmet.2006.10.010

H. Cao, S. Yu, Z. Yao, D. Galson, Y. Jiang et al., Activating transcription factor 4 regulates osteoclast differentiation in mice, Journal of Clinical Investigation, vol.120, issue.8, pp.2755-66, 2010.
DOI : 10.1172/JCI42106DS1

M. Simon and B. Keith, The role of oxygen availability in embryonic development and stem cell function, Nature Reviews Molecular Cell Biology, vol.274, issue.4, pp.285-96, 2008.
DOI : 10.1172/JCI17669

H. Bunn and R. Poyton, Oxygen sensing and molecular adaptation to hypoxia, Physiological Reviews, vol.76, issue.3, pp.839-85, 1996.
DOI : 10.1152/physrev.1996.76.3.839

A. Giaccia, B. Siim, and R. Johnson, HIF-1 as a target for drug development, Nature Reviews Drug Discovery, vol.23, issue.10, pp.803-814, 2003.
DOI : 10.1128/MCB.23.14.4959-4971.2003

W. Kaelin and . Jr, How oxygen makes its presence felt, Genes & Development, vol.16, issue.12, pp.1441-1446, 2002.
DOI : 10.1101/gad.1003602

L. Liu and M. Simon, Regulation of Transcription and Translation by Hypoxia, Cancer Biology & Therapy, vol.3, issue.6, pp.492-499, 2004.
DOI : 10.4161/cbt.3.6.1010

G. Semenza, Targeting HIF-1 for cancer therapy, Nature Reviews Cancer, vol.3, issue.10, pp.721-753, 2003.
DOI : 10.1038/nrc1187

B. Keith, R. Johnson, and M. Simon, HIF1?? and HIF2??: sibling rivalry in hypoxic tumour growth and progression, Nature Reviews Cancer, vol.1, issue.1, pp.9-22, 2011.
DOI : 10.1016/S1535-6108(02)00043-0

URL : http://europepmc.org/articles/pmc3401912?pdf=render

C. Maes, G. Carmeliet, and E. Schipani, Hypoxia-driven pathways in bone development, regeneration and disease, Nature Reviews Rheumatology, vol.360, issue.6, pp.358-66, 2012.
DOI : 10.1056/NEJMoa0808710

URL : https://lirias.kuleuven.be/bitstream/123456789/356216/3/NRR-2012-OAcopy.pdf

G. Wang, B. Jiang, E. Rue, and G. Semenza, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension., Proceedings of the National Academy of Sciences, vol.92, issue.12, pp.5510-5514, 1995.
DOI : 10.1073/pnas.92.12.5510

URL : http://www.pnas.org/content/92/12/5510.full.pdf

J. Pouyssegur, F. Dayan, and N. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.9, issue.suppl. 5, pp.437-480, 2006.
DOI : 10.1016/j.devcel.2005.09.010

URL : https://hal.archives-ouvertes.fr/hal-00321054

D. Chan, P. Sutphin, N. Denko, and A. Giaccia, Role of Prolyl Hydroxylation in Oncogenically Stabilized Hypoxia-inducible Factor-1??, Journal of Biological Chemistry, vol.60, issue.42, pp.40112-40119, 2002.
DOI : 10.1038/sj.onc.1204972

URL : http://www.jbc.org/content/277/42/40112.full.pdf

M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando et al., HIFalpha Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing, Science, vol.292, issue.5516, pp.464-472, 2001.
DOI : 10.1126/science.1059817

P. Jaakkola, D. Mole, Y. Tian, M. Wilson, J. Gielbert et al., Targeting of HIF-alpha to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation, Science, vol.292, issue.5516, pp.468-72, 2001.
DOI : 10.1126/science.1059796

J. Min, H. Yang, M. Ivan, F. Gertler, W. Kaelin et al., Structure of an HIF-1alpha -pVHL Complex: Hydroxyproline Recognition in Signaling, Science, vol.296, issue.5574, pp.1886-1895, 2002.
DOI : 10.1126/science.1073440

G. Wang and G. Semenza, General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia., Proceedings of the National Academy of Sciences, vol.90, issue.9, pp.4304-4312, 1993.
DOI : 10.1073/pnas.90.9.4304

D. Chan, P. Sutphin, Y. S. Giaccia, and A. , Coordinate Regulation of the Oxygen-Dependent Degradation Domains of Hypoxia-Inducible Factor 1??, Molecular and Cellular Biology, vol.25, issue.15, pp.6415-6441, 2005.
DOI : 10.1128/MCB.25.15.6415-6426.2005

E. Berra, E. Benizri, A. Ginouves, V. Volmat, D. Roux et al., HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1?? in normoxia, The EMBO Journal, vol.22, issue.16, pp.4082-90, 2003.
DOI : 10.1093/emboj/cdg392

URL : https://hal.archives-ouvertes.fr/hal-00322761

P. Kallio, W. Wilson, O. Brien, S. Makino, Y. Poellinger et al., Regulation of the Hypoxia-inducible Transcription Factor 1?? by the Ubiquitin-Proteasome Pathway, Journal of Biological Chemistry, vol.360, issue.10, pp.6519-6544, 1999.
DOI : 10.1016/0955-0674(92)90135-Y

C. Maes, E. Araldi, K. Haigh, R. Khatri, R. Van-looveren et al., VEGF-independent cell-autonomous functions of HIF-1?? regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival, Journal of Bone and Mineral Research, vol.11, issue.3, pp.596-609, 2012.
DOI : 10.1016/j.ccr.2007.04.001

K. Parmar, P. Mauch, J. Vergilio, R. Sackstein, and J. Down, Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia, Proceedings of the National Academy of Sciences, vol.435, issue.7044, pp.5431-5437, 2007.
DOI : 10.1038/nature03703

I. Winkler, V. Barbier, R. Wadley, A. Zannettino, S. Williams et al., Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches, Blood, vol.116, issue.3, pp.375-85, 2010.
DOI : 10.1182/blood-2009-07-233437

E. Rankin, A. Giaccia, and E. Schipani, A Central Role for Hypoxic Signaling in Cartilage, Bone, and Hematopoiesis, Current Osteoporosis Reports, vol.16, issue.2, pp.46-52, 2011.
DOI : 10.1038/nm.2153

URL : http://europepmc.org/articles/pmc4012534?pdf=render

D. Chow, L. Wenning, W. Miller, and E. Papoutsakis, Modeling pO 2 Distributions in the Bone Marrow Hematopoietic Compartment. I. Krogh's Model, Biophysical Journal, vol.81, issue.2, pp.675-84, 2001.
DOI : 10.1016/S0006-3495(01)75732-3

URL : https://doi.org/10.1016/s0006-3495(01)75732-3

Y. Wang, C. Wan, L. Deng, X. Liu, X. Cao et al., The hypoxia-inducible factor ?? pathway couples angiogenesis to osteogenesis during skeletal development, Journal of Clinical Investigation, vol.117, issue.6, pp.1616-1642, 2007.
DOI : 10.1172/JCI31581DS1

URL : http://europepmc.org/articles/pmc1878533?pdf=render

E. Rankin, C. Wu, R. Khatri, T. Wilson, R. Andersen et al., The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO, Cell, vol.149, issue.1, pp.63-74, 2012.
DOI : 10.1016/j.cell.2012.01.051

E. Schipani and . Al, Journal of Bone and Mineral Research

C. Maes, S. Goossens, S. Bartunkova, B. Drogat, L. Coenegrachts et al., Increased skeletal VEGF enhances ??-catenin activity and results in excessively ossified bones, The EMBO Journal, vol.129, issue.2, pp.424-465, 2010.
DOI : 10.1172/JCI9369

Y. Liu, A. Berendsen, S. Jia, S. Lotinun, R. Baron et al., Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation, Journal of Clinical Investigation, vol.122, issue.9, pp.3101-3114, 2012.
DOI : 10.1172/JCI61209DS1

E. Zelzer and B. Olsen, Multiple Roles of Vascular Endothelial Growth Factor (VEGF) in Skeletal Development, Growth, and Repair, Curr Topics Dev Biol, vol.65, pp.169-87, 2005.
DOI : 10.1016/S0070-2153(04)65006-X

F. Cackowski, J. Anderson, K. Patrene, R. Choksi, S. Shapiro et al., Osteoclasts are important for bone angiogenesis, Blood, vol.115, issue.1, pp.140-149, 2010.
DOI : 10.1182/blood-2009-08-237628

A. Weidemann and R. Johnson, Biology of HIF-1??, Cell Death & Differentiation, vol.17, issue.4, pp.621-628, 2008.
DOI : 10.1038/sj.emboj.7601300

T. Seagroves and R. Johnson, Two HIFs may be better than one, Cancer Cell, vol.1, issue.3, pp.211-214, 2002.
DOI : 10.1016/S1535-6108(02)00048-X

N. Iyer, L. Kotch, F. Agani, S. Leung, E. Laughner et al., Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor??1alpha, Genes & Development, vol.12, issue.2, pp.149-62, 1998.
DOI : 10.1101/gad.12.2.149

T. Seagroves, H. Ryan, H. Lu, B. Routers, M. Knapp et al., Transcription Factor HIF-1 Is a Necessary Mediator of the Pasteur Effect in Mammalian Cells, Molecular and Cellular Biology, vol.21, issue.10, pp.3436-3480, 2001.
DOI : 10.1128/MCB.21.10.3436-3444.2001

I. Papandreou, R. Cairns, L. Fontana, A. Lim, and N. Denko, HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metabolism, vol.3, issue.3, pp.187-97, 2006.
DOI : 10.1016/j.cmet.2006.01.012

J. Kim, I. Tchernyshyov, G. Semenza, and C. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia, Cell Metabolism, vol.3, issue.3, pp.177-85, 2006.
DOI : 10.1016/j.cmet.2006.02.002

R. Fukuda, H. Zhang, J. Kim, L. Shimoda, C. Dang et al., HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells, Cell, vol.129, issue.1, pp.111-133, 2007.
DOI : 10.1016/j.cell.2007.01.047

E. Esen, J. Chen, C. Karner, A. Okunade, B. Patterson et al., WNT-LRP5 Signaling Induces Warburg Effect through mTORC2 Activation during Osteoblast Differentiation, Cell Metabolism, vol.17, issue.5, pp.745-55, 2013.
DOI : 10.1016/j.cmet.2013.03.017

M. Rached, A. Kode, L. Xu, Y. Yoshikawa, J. Paik et al., FoxO1 Is a Positive Regulator of Bone Formation by Favoring Protein Synthesis and Resistance to Oxidative Stress in Osteoblasts, Cell Metabolism, vol.11, issue.2, pp.147-60, 2010.
DOI : 10.1016/j.cmet.2010.01.001

E. Ambrogini, M. Almeida, M. Martin?millan, J. Paik, R. Depinho et al., FoxO-Mediated Defense against Oxidative Stress in Osteoblasts Is Indispensable for Skeletal Homeostasis in Mice, Cell Metabolism, vol.11, issue.2, pp.136-182, 2010.
DOI : 10.1016/j.cmet.2009.12.009

J. Ye and C. Koumenis, ATF4, an ER Stress and Hypoxia-Inducible Transcription Factor and its Potential Role in Hypoxia Tolerance and Tumorigenesis, Current Molecular Medicine, vol.9, issue.4, pp.411-417, 2009.
DOI : 10.2174/156652409788167096

J. Koditz, J. Nesper, M. Wottawa, D. Stiehl, G. Camenisch et al., Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor, Blood, vol.110, issue.10, pp.3610-3617, 2007.
DOI : 10.1182/blood-2007-06-094441

T. Ferreira, L. Hertzberg, M. Gassmann, and E. Campos, The yeast genome may harbor hypoxia response elements (HRE), Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.146, issue.1-2, pp.255-63, 2007.
DOI : 10.1016/j.cbpc.2006.08.013

T. Yokoyama and T. Nakamura, Tribbles in disease: Signaling pathways important for cellular function and neoplastic transformation, Cancer Science, vol.373, issue.6, pp.1115-1137, 2011.
DOI : 10.1016/j.bbrc.2008.06.088

E. Zelzer, D. Glotzer, C. Hartmann, D. Thomas, N. Fukai et al., Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2, Mechanisms of Development, vol.106, issue.1-2, pp.97-106, 2001.
DOI : 10.1016/S0925-4773(01)00428-2

T. Kwon, X. Zhao, Q. Yang, Y. Li, C. Ge et al., Physical and functional interactions between Runx2 and HIF-1?? induce vascular endothelial growth factor gene expression, Journal of Cellular Biochemistry, vol.77, issue.12, pp.3582-93, 2011.
DOI : 10.1086/432261

URL : http://europepmc.org/articles/pmc3202060?pdf=render

. Journal, M. Bone, A. Research, I. And-hif?1a, and . Bone,