J. Buckwalter and H. Mankin, Articular cartilage repair and transplantation, Arthritis & Rheumatism, vol.274, issue.8, pp.1331-1342, 1998.
DOI : 10.3109/17453679209154757

J. Steadman, W. Rodkey, and J. Rodrigo, Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects, Clinical Orthopaedics and Related Research, vol.391, pp.362-369, 2001.
DOI : 10.1097/00003086-200110001-00033

A. Tyyni and J. Karlsson, Biological treatment of joint cartilage damage, Scandinavian Journal of Medicine and Science in Sports, vol.10, issue.5, pp.249-265, 2000.
DOI : 10.1034/j.1600-0838.2000.010005249.x

E. Hunziker, Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthritis and Cartilage, vol.10, issue.6, pp.432-463, 2002.
DOI : 10.1053/joca.2002.0801

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, and O. Isaksson, Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation, New England Journal of Medicine, vol.331, issue.14, pp.889-895, 1994.
DOI : 10.1056/NEJM199410063311401

J. Moseley, . Jr, A. Anderson, J. Browne, B. Mandelbaum et al., Long-Term Durability of Autologous Chondrocyte Implantation, The American Journal of Sports Medicine, vol.198, issue.2, pp.238-246, 2010.
DOI : 10.1186/ar613

L. Peterson, H. Vasiliadis, M. Brittberg, and A. Lindahl, Autologous Chondrocyte Implantation, The American Journal of Sports Medicine, vol.58, issue.6, pp.1117-1124, 2010.
DOI : 10.1177/0363546508322897

C. Szpalski, M. Barbaro, F. Sagebin, and S. Warren, Bone Tissue Engineering: Current Strategies and Techniques???Part II: Cell Types, Tissue Engineering Part B: Reviews, vol.18, issue.4, pp.258-269, 2012.
DOI : 10.1089/ten.teb.2011.0440

J. Chen, H. Chen, P. Li, H. Diao, and S. Zhu, Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds, Biomaterials, vol.32, issue.21, pp.4793-4805, 2012.
DOI : 10.1016/j.biomaterials.2011.03.041

C. Vinatier, D. Mrugala, C. Jorgensen, J. Guicheux, and D. Noel, Cartilage engineering: a crucial combination of cells, biomaterials and biofactors, Trends in Biotechnology, vol.27, issue.5, pp.307-314, 2009.
DOI : 10.1016/j.tibtech.2009.02.005

M. Maumus, D. Guerit, K. Toupet, C. Jorgensen, and D. Noel, Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology, Stem Cell Research & Therapy, vol.2, issue.2, p.14, 2011.
DOI : 10.1089/ten.tec.2008.0569

URL : https://hal.archives-ouvertes.fr/inserm-00585188

L. Cao, F. Yang, G. Liu, D. Yu, and H. Li, The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells, Biomaterials, vol.32, issue.16, pp.3910-3920, 2011.
DOI : 10.1016/j.biomaterials.2011.02.014

T. Vinardell, E. Sheehy, C. Buckley, and D. Kelly, Phenotypic Stability of Cartilaginous Tissues Engineered from Different Stem Cell Sources, Tissue Engineering Part A, vol.18, issue.11-12, pp.1161-1170, 2012.
DOI : 10.1089/ten.tea.2011.0544

F. Guilak, K. Lott, H. Awad, Q. Cao, and K. Hicok, Clonal analysis of the differentiation potential of human adipose-derived adult stem cells, Journal of Cellular Physiology, vol.13, issue.12, pp.229-237, 2006.
DOI : 10.1091/mbc.E02-02-0105

S. Daher, B. Johnstone, and D. Phinney, Adipose Stromal/Stem Cells: Basic and Translational Advances: The IFATS Collection, STEM CELLS, vol.102, issue.5, pp.2664-2665, 2008.
DOI : 10.1161/CIRCRESAHA.107.159475

M. Pittenger, A. Mackay, S. Beck, R. Jaiswal, and R. Douglas, Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, vol.284, issue.5411, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

P. Zuk, M. Zhu, P. Ashjian, D. Ugarte, D. Huang et al., Human Adipose Tissue Is a Source of Multipotent Stem Cells, Molecular Biology of the Cell, vol.7, issue.12, pp.4279-4295, 2002.
DOI : 10.1089/107632701300062859

M. Strioga, S. Viswanathan, A. Darinskas, O. Slaby, and J. Michalek, Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells, Stem Cells and Development, vol.21, issue.14, pp.2724-2752, 2012.
DOI : 10.1089/scd.2011.0722

D. Huey, J. Hu, and K. Athanasiou, Unlike Bone, Cartilage Regeneration Remains Elusive, Science, vol.8, issue.2, pp.917-921, 2012.
DOI : 10.1002/jbmr.5650080203

B. Diekman and F. Guilak, Stem cell-based therapies for osteoarthritis, Current Opinion in Rheumatology, vol.25, issue.1, pp.119-126, 2013.
DOI : 10.1097/BOR.0b013e32835aa28d

L. Nelson, J. Fairclough, and C. Archer, Use of stem cells in the biological repair of articular cartilage, Expert Opinion on Biological Therapy, vol.41, issue.7, pp.43-55, 2010.
DOI : 10.1089/dna.1992.11.227

P. Nooeaid, V. Salih, J. Beier, and A. Boccaccini, Osteochondral tissue engineering: scaffolds, stem cells and applications, Journal of Cellular and Molecular Medicine, vol.10, issue.1, pp.2247-2270, 2012.
DOI : 10.1089/ten.2004.10.1376

L. Bian, D. Zhai, E. Zhang, R. Mauck, and J. Burdick, Dynamic Compressive Loading Enhances Cartilage Matrix Synthesis and Distribution and Suppresses Hypertrophy in hMSC-Laden Hyaluronic Acid Hydrogels, Tissue Engineering Part A, vol.18, issue.7-8, pp.715-724, 2013.
DOI : 10.1089/ten.tea.2011.0455

URL : http://europepmc.org/articles/pmc3313608?pdf=render

E. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, Biomaterials for stem cell differentiation, Advanced Drug Delivery Reviews, vol.60, issue.2, pp.215-228, 2008.
DOI : 10.1016/j.addr.2007.08.037

B. Marquass, R. Schulz, P. Hepp, M. Zscharnack, and T. Aigner, Matrix-Associated Implantation of Predifferentiated Mesenchymal Stem Cells Versus Articular Chondrocytes, The American Journal of Sports Medicine, vol.92, issue.3, pp.1401-1412, 2011.
DOI : 10.1177/0363546510365296

M. Zscharnack, P. Hepp, R. Richter, T. Aigner, and R. Schulz, Repair of Chronic Osteochondral Defects Using Predifferentiated Mesenchymal Stem Cells in an Ovine Model, The American Journal of Sports Medicine, vol.18, issue.1, pp.1857-1869, 2011.
DOI : 10.1186/1471-2474-6-60

B. Estes, B. Diekman, J. Gimble, and F. Guilak, Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype, Nature Protocols, vol.17, issue.7, pp.1294-1311, 2010.
DOI : 10.1128/MCB.17.4.2336

URL : http://europepmc.org/articles/pmc3219531?pdf=render

S. Weiss, T. Hennig, R. Bock, E. Steck, and W. Richter, Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells, Journal of Cellular Physiology, vol.7, pp.84-93, 2010.
DOI : 10.2106/00004623-200403000-00001

E. Sheehy, C. Buckley, and D. Kelly, Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells, Biochemical and Biophysical Research Communications, vol.417, issue.1, 2011.
DOI : 10.1016/j.bbrc.2011.11.105

I. Silver, Measurement of PH and Ionic Composition of Pericellular Sites [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.271, issue.912, pp.261-272, 1975.
DOI : 10.1098/rstb.1975.0050

S. Zhou, Z. Cui, and J. Urban, Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: A modeling study, Arthritis & Rheumatism, vol.14, issue.12, pp.3915-3924, 2004.
DOI : 10.1113/expphysiol.1995.sp003841

J. Haselgrove, I. Shapiro, and S. Silverton, Computer modeling of the oxygen supply and demand of cells of the avian growth cartilage, American Journal of Physiology-Cell Physiology, vol.263, issue.2, pp.497-506, 1993.
DOI : 10.1016/8756-3282(89)90146-4

R. Amarilio, S. Viukov, A. Sharir, I. Eshkar-oren, and R. Johnson, HIF1?? regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis, Development, vol.134, issue.21, pp.3917-3928, 2007.
DOI : 10.1242/dev.008441

B. Markway, G. Tan, G. Brooke, J. Hudson, and J. Cooper-white, Enhanced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells in Low Oxygen Environment Micropellet Cultures, Cell Transplantation, vol.190, issue.2, pp.29-42, 2010.
DOI : 10.1159/000178024

C. Merceron, C. Vinatier, S. Portron, M. Masson, and J. Amiaud, Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells, American Journal of Physiology-Cell Physiology, vol.449, issue.2, pp.355-364, 2010.
DOI : 10.1089/107632701300062859

URL : http://ajpcell.physiology.org/content/ajpcell/298/2/C355.full.pdf

C. Vinatier, D. Magne, P. Weiss, C. Trojani, and N. Rochet, A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, issue.33, pp.6643-6651, 2005.
DOI : 10.1016/j.biomaterials.2005.04.057

URL : https://hal.archives-ouvertes.fr/inserm-00110465

C. Merceron, S. Portron, M. Masson, J. Lesoeur, and B. Fellah, The Effect of Two- and Three-Dimensional Cell Culture on the Chondrogenic Potential of Human Adipose-Derived Mesenchymal Stem Cells after Subcutaneous Transplantation with an Injectable Hydrogel, Cell Transplantation, vol.7, issue.10, pp.1575-1588, 2011.
DOI : 10.1089/107632701300062859

C. Merceron, S. Portron, C. Vignes-colombeix, E. Rederstorff, and M. Masson, Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically over-sulphated polysaccharide of marine origin: Potential application to cartilage regenerative medicine, Bone, vol.50, 2012.
DOI : 10.1016/j.bone.2012.02.288

C. Vinatier, D. Magne, A. Moreau, O. Gauthier, and O. Malard, Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel, Journal of Biomedical Materials Research Part A, vol.31, issue.1, pp.66-74, 2007.
DOI : 10.4049/jimmunol.166.4.2775

URL : http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.30867/pdf

R. Yang, C. Davies, C. Archer, and R. Richards, Immunohistochemistry of matrix markers in Technovit 9100 New??-embedded undecalcified bone sections, European Cells and Materials, vol.6, issue.71, pp.57-71, 2003.
DOI : 10.22203/eCM.v006a06

URL : https://doi.org/10.22203/ecm.v006a06

C. Vinatier, O. Gauthier, A. Fatimi, C. Merceron, and M. Masson, An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects, Biotechnology and Bioengineering, vol.358, issue.Pt 1, pp.1259-1267, 2009.
DOI : 10.1002/jbm.a.30867

J. Clouet, C. Vinatier, C. Merceron, M. Maugars, and Y. , From osteoarthritis treatments to future regenerative therapies for cartilage, Drug Discovery Today, vol.14, issue.19-20, pp.913-925, 2009.
DOI : 10.1016/j.drudis.2009.07.012

O. Driscoll, S. Keeley, F. Salter, and R. , Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year., The Journal of Bone & Joint Surgery, vol.70, issue.4, pp.595-606, 1988.
DOI : 10.2106/00004623-198870040-00017

A. Dickhut, K. Pelttari, P. Janicki, W. Wagner, and V. Eckstein, Calcification or dedifferentiation: Requirement to lock mesenchymal stem cells in a desired differentiation stage, Journal of Cellular Physiology, vol.48, issue.1, pp.219-226, 2009.
DOI : 10.1016/S0002-9440(10)65003-1

J. Owen and J. Wayne, Influence of a Superficial Tangential Zone Over Repairing Cartilage Defects: Implications for Tissue Engineering, Biomechanics and Modeling in Mechanobiology, vol.113, issue.5, pp.102-110, 2006.
DOI : 10.1177/230949900301100104

R. Shirazi, A. Shirazi-adl, and M. Hurtig, Role of cartilage collagen fibrils networks in knee joint biomechanics under compression, Journal of Biomechanics, vol.41, issue.16, pp.3340-3348, 2008.
DOI : 10.1016/j.jbiomech.2008.09.033

F. Shapiro, S. Koide, and M. Glimcher, Cell origin and differentiation in the repair of full-thickness defects of articular cartilage., The Journal of Bone & Joint Surgery, vol.75, issue.4, pp.532-553, 1993.
DOI : 10.2106/00004623-199304000-00009

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : https://doi.org/10.1016/j.cell.2006.06.044

P. Angele, J. Yoo, C. Smith, J. Mansour, and K. Jepsen, Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro, Journal of Orthopaedic Research, vol.80, issue.3, pp.451-457, 2003.
DOI : 10.2106/00004623-199812000-00004

A. Huang, M. Farrell, M. Kim, and R. Mauck, Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel, European Cells and Materials, vol.19, pp.72-85, 2010.
DOI : 10.22203/eCM.v019a08

URL : http://doi.org/10.22203/ecm.v019a08

S. Alsalameh, R. Amin, T. Gemba, and M. Lotz, Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage, Arthritis & Rheumatism, vol.191, issue.5, pp.1522-1532, 2004.
DOI : 10.1084/jem.191.1.9

URL : http://onlinelibrary.wiley.com/doi/10.1002/art.20269/pdf

G. Dowthwaite, J. Bishop, S. Redman, I. Khan, and P. Rooney, The surface of articular cartilage contains a progenitor cell population, Journal of Cell Science, vol.117, issue.6, pp.889-897, 2004.
DOI : 10.1242/jcs.00912

URL : http://jcs.biologists.org/content/joces/117/6/889.full.pdf

D. Seol, D. Mccabe, H. Choe, H. Zheng, and Y. Yu, Chondrogenic progenitor cells respond to cartilage injury, Arthritis & Rheumatism, vol.8, issue.Suppl, pp.3626-3637, 2012.
DOI : 10.1046/j.1524-475x.2000.00145.x

URL : http://onlinelibrary.wiley.com/doi/10.1002/art.34613/pdf

C. Karlsson, M. Thornemo, H. Henriksson, and A. Lindahl, Identification of a stem cell niche in the zone of Ranvier within the knee joint, Journal of Anatomy, vol.24, issue.1, pp.355-363, 2009.
DOI : 10.2106/00004623-200300002-00012

G. Semenza, M. Nejfelt, S. Chi, and S. Antonarakis, Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene., Proceedings of the National Academy of Sciences, vol.88, issue.13, pp.5680-5684, 1991.
DOI : 10.1073/pnas.88.13.5680

URL : http://www.pnas.org/content/88/13/5680.full.pdf

J. Robins, N. Akeno, A. Mukherjee, R. Dalal, and B. Aronow, Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9, Bone, vol.37, issue.3, pp.313-322, 2005.
DOI : 10.1016/j.bone.2005.04.040

E. Aro, R. Khatri, R. Gerard-o-'riley, L. Mangiavini, and J. Myllyharju, Hypoxia-inducible Factor-1 (HIF-1) but Not HIF-2 Is Essential for Hypoxic Induction of Collagen Prolyl 4-Hydroxylases in Primary Newborn Mouse Epiphyseal Growth Plate Chondrocytes, Journal of Biological Chemistry, vol.1, issue.44, pp.37134-37144, 2012.
DOI : 10.1002/(SICI)1097-0029(19981015)43:2<111::AID-JEMT4>3.0.CO;2-O

D. Pfander, T. Cramer, E. Schipani, and R. Johnson, HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes, Journal of Cell Science, vol.116, issue.9, pp.1819-1826, 2003.
DOI : 10.1242/jcs.00385

URL : http://jcs.biologists.org/content/joces/116/9/1819.full.pdf

A. Freyria and F. Mallein-gerin, Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors, Injury, vol.43, issue.3, pp.259-265, 2011.
DOI : 10.1016/j.injury.2011.05.035

D. Gawlitta, M. Van-rijen, E. Schrijver, J. Alblas, and W. Dhert, Hypoxia Impedes Hypertrophic Chondrogenesis of Human Multipotent Stromal Cells, Tissue Engineering Part A, vol.18, issue.19-20, pp.1957-1966, 2012.
DOI : 10.1089/ten.tea.2011.0657

M. Hirao, N. Tamai, N. Tsumaki, H. Yoshikawa, and A. Myoui, Oxygen Tension Regulates Chondrocyte Differentiation and Function during Endochondral Ossification, Journal of Biological Chemistry, vol.17, issue.Suppl. 1, pp.31079-31092, 2006.
DOI : 10.1093/emboj/17.19.5718