J. Buckwalter, Articular Cartilage: Injuries and Potential for Healing, Journal of Orthopaedic & Sports Physical Therapy, vol.28, issue.4, pp.192-202, 1998.
DOI : 10.2519/jospt.1998.28.4.192

T. Dvir, B. Timko, D. Kohane, and R. Langer, Nanotechnological strategies for engineering complex tissues, Nature Nanotechnology, vol.300, issue.1, pp.13-22, 2011.
DOI : 10.1038/scientificamerican0509-72

J. Shi, A. Votruba, O. Farokhzad, and R. Langer, Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications, Nano Letters, vol.10, issue.9, pp.3223-3253, 2010.
DOI : 10.1021/nl102184c

O. Wichterle and D. Lim, Hydrophilic Gels for Biological Use, Nature, vol.185, issue.4706, pp.117-125, 1960.
DOI : 10.1038/185117a0

J. Kopecek, Hydrogel biomaterials: A smart future?, Biomaterials, vol.28, issue.34, pp.5185-92, 2007.
DOI : 10.1016/j.biomaterials.2007.07.044

M. Zohuriaan-mehr, H. Omidian, S. Doroudiani, and K. Kabiri, Advances in non-hygienic applications of superabsorbent hydrogel materials, Journal of Materials Science, vol.5, issue.21, pp.5711-5746, 2010.
DOI : 10.1299/kikaib.65.3734

A. Richter, G. Gerlach, and K. Arndt, Hydrogels for actuators Hydrogel sensors and actuators, pp.221-269, 2010.

N. Choudhury, S. Sampath, and A. Shukla, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, Energy Environ. Sci., vol.110, issue.115, pp.55-67, 2009.
DOI : 10.1021/jp060425t

T. Khaleque, S. Abu-salih, J. Saunders, and W. Moussa, Experimental Methods of Actuation, Characterization and Prototyping of Hydrogels for BioMEMS/NEMS Applications, Journal of Nanoscience and Nanotechnology, vol.11, issue.3, pp.2470-2479, 2011.
DOI : 10.1166/jnn.2011.3567

G. Hendrickson, A. Lyon, and L. , Bioresponsive hydrogels for sensing applications, Soft Matter, vol.19, issue.1, pp.29-35, 2009.
DOI : 10.1021/cm063086p

J. Drury and D. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, vol.24, issue.24, pp.4337-51, 2003.
DOI : 10.1016/S0142-9612(03)00340-5

K. Deligkaris, T. Tadele, W. Olthuis, . Van-den, and A. Berg, Hydrogel-based devices for biomedical applications, Sensors and Actuators B: Chemical, vol.147, issue.2, pp.765-74, 2010.
DOI : 10.1016/j.snb.2010.03.083

M. Kobayashi and H. Hyu, Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants, Materials, vol.24, issue.4, pp.2753-71, 2010.
DOI : 10.1016/j.biomaterials.2004.08.028

S. Rimmer, Synthesis of hydrogels for biomedical applications: control of structure and properties, Biomedical hydrogels, pp.51-62, 2011.
DOI : 10.1533/9780857091383.1.51

B. Slaughter, S. Khurshid, O. Fisher, A. Khademhosseini, and N. Peppas, Hydrogels in Regenerative Medicine, Advanced Materials, vol.13, issue.32-33, pp.3307-3336, 2009.
DOI : 10.1002/jbm.b.30729

N. Satarkar, D. Biswal, and J. Hilt, Hydrogel nanocomposites: a review of applications as remote controlled biomaterials, Soft Matter, vol.20, issue.11, pp.2364-71, 2010.
DOI : 10.1002/jbm.a.32322

L. Söderqvist, M. Sjöberg, J. Albertsson, A. Hartman, and J. , Hydrogels from polysaccharides for biomedical applications, Materials, chemicals, and energy from forest biomass, pp.153-67, 2007.

S. Van-vlierberghe, P. Dubruel, and E. Schacht, Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review, Biomacromolecules, vol.12, issue.5, pp.1387-408, 2011.
DOI : 10.1021/bm200083n

A. Sannino, C. Demitri, and M. Madaghiele, Biodegradable Cellulose-based Hydrogels: Design and Applications, Materials, vol.87, issue.10, pp.353-73, 2009.
DOI : 10.1038/193293a0

URL : http://www.mdpi.com/1996-1944/2/2/353/pdf

J. Burdick and G. Prestwich, Hyaluronic Acid Hydrogels for Biomedical Applications, Advanced Materials, vol.5, issue.12, pp.41-56, 2011.
DOI : 10.1016/j.actbio.2008.09.012

URL : http://europepmc.org/articles/pmc3730855?pdf=render

P. Weiss and A. Fatimi, Injectable composites for bone repair, Biomedical composites, 2010.
DOI : 10.1533/9781845697372.2.255

L. Nair, C. Laurencin, and M. Tandon, Injectable Hydrogels as Biomaterials, Advanced biomaterials: fundamentals, processing, and applications, pp.179-203, 2009.
DOI : 10.1002/1616-3028(200102)11:1<37::AID-ADFM37>3.0.CO;2-V

H. Tan and K. Marra, Injectable, Biodegradable Hydrogels for Tissue Engineering Applications, Materials, vol.143, issue.3, pp.1746-67, 2010.
DOI : 10.1016/S0142-9612(03)00049-8

URL : http://www.mdpi.com/1996-1944/3/3/1746/pdf

L. Yu and J. Ding, Injectable hydrogels as unique biomedical materials, Chemical Society Reviews, vol.101, issue.8, pp.1473-81, 2008.
DOI : 10.1039/b713009k

M. Lapkowski, P. Weiss, G. Daculsi, and A. Dupraz, , pp.95-9582, 1995.

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.215-243, 2002.
DOI : 10.1016/S0001-8686(02)00035-0

URL : https://hal.archives-ouvertes.fr/inserm-00198799

A. Fatimi, J. Tassin, S. Quillard, M. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, issue.5, pp.533-576, 2008.
DOI : 10.1016/j.biomaterials.2007.10.032

URL : https://hal.archives-ouvertes.fr/inserm-00383358

P. Calvert, Hydrogels for Soft Machines, Advanced Materials, vol.25, issue.14, pp.743-56, 2009.
DOI : 10.1007/3-540-56791-7_1

I. Levental, P. Georges, and P. Janmey, Soft biological materials and their impact on cell function, Soft Matter, vol.297, issue.3, pp.299-306, 2007.
DOI : 10.1016/j.yexcr.2004.03.035

R. Hynes, The Extracellular Matrix: Not Just Pretty Fibrils, Science, vol.284, issue.25, pp.1216-1225, 2009.
DOI : 10.1074/jbc.M809348200

D. Discher, D. Mooney, and P. Zandstra, Growth Factors, Matrices, and Forces Combine and Control Stem Cells, Science, vol.106, issue.2, pp.1673-1680, 2009.
DOI : 10.1073/pnas.0808932106

URL : http://europepmc.org/articles/pmc2847855?pdf=render

D. Discher, P. Janmey, and Y. Wang, Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, vol.310, issue.5751, pp.1139-1182, 2005.
DOI : 10.1126/science.1116995

URL : http://www.seas.upenn.edu/~discher/pdfs/Cell_on_Gel-ScienceReview.pdf

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-89, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : https://doi.org/10.1016/j.cell.2006.06.044

J. Tse and A. Engler, Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate, PLoS ONE, vol.96, issue.1, p.15978, 2011.
DOI : 10.1371/journal.pone.0015978.s003

URL : https://doi.org/10.1371/journal.pone.0015978

S. Yang, L. Zhao, C. Yu, X. Zhou, J. Tang et al., On the Origin of Helical Mesostructures, Journal of the American Chemical Society, vol.128, issue.32, pp.10460-10466, 2006.
DOI : 10.1021/ja0619049

F. Rambaud, K. Vallé, S. Thibaud, B. Julián-lópez, and C. Sanchez, One-Pot Synthesis of Functional Helicoidal Hybrid Organic-Inorganic Nanofibers with Periodically Organized Mesoporosity, Advanced Functional Materials, vol.181, issue.29, pp.2896-905, 2009.
DOI : 10.1021/jp802615z

URL : https://hal.archives-ouvertes.fr/hal-00411441

S. Wang, Ordered mesoporous materials for drug delivery, Microporous and Mesoporous Materials, vol.117, issue.1-2, pp.1-9, 2009.
DOI : 10.1016/j.micromeso.2008.07.002

P. Weiss, C. Vinatier, J. Guicheux, G. Grimandi, and G. Daculsi, A selfsetting hydrogel as an extracellular synthetic matrix for tissue engineering, Key Eng Mater, pp.254-2561107, 2004.
DOI : 10.4028/www.scientific.net/kem.254-256.1107

X. Bourges, M. Schmitt, Y. Amouriq, G. Daculsi, G. Legeay et al., Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: Capillary gas chromatography studies, Journal of Biomaterials Science, Polymer Edition, vol.720, issue.2, pp.573-582, 2001.
DOI : 10.1016/0021-9673(95)00308-8

URL : https://hal.archives-ouvertes.fr/inserm-00198801

C. Vinatier, D. Magne, P. Weiss, C. Trojani, N. Rochet et al., A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, issue.33, pp.6643-51, 2005.
DOI : 10.1016/j.biomaterials.2005.04.057

URL : https://hal.archives-ouvertes.fr/inserm-00110465