K. Ensrud, D. Thompson, J. Cauley, M. Nevitt, D. Kado et al., Prevalent Vertebral Deformities Predict Mortality and Hospitalization in Older Women with Low Bone Mass, Journal of the American Geriatrics Society, vol.63, issue.suppl 3, pp.241-250, 2000.
DOI : 10.1007/s002239900513

P. Casez, B. Uebelhart, J. Gaspoz, S. Ferrari, M. Louis-simonet et al., Targeted education improves the very low recognition of vertebral fractures and osteoporosis management by general internists, Osteoporosis International, vol.183, issue.7, pp.965-70, 2006.
DOI : 10.2214/ajr.183.4.1830949

L. Melton-3rd, E. Atkinson, C. Cooper, O. Fallon, W. Riggs et al., Vertebral Fractures Predict Subsequent Fractures, Osteoporosis International, vol.10, issue.3, pp.214-235, 1999.
DOI : 10.1007/s001980050218

M. Mcclung, Bisphosphonates in osteoporosis: recent clinical experience, Expert Opinion on Pharmacotherapy, vol.7, issue.5, pp.225-263, 2000.
DOI : 10.1007/BF01623782

H. Bone, D. Hosking, J. Devogelaer, J. Tucci, R. Emkey et al., Ten Years' Experience with Alendronate for Osteoporosis in Postmenopausal Women, New England Journal of Medicine, vol.350, issue.12, pp.1189-99, 2004.
DOI : 10.1056/NEJMoa030897

S. Papapoulos, S. Quandt, U. Liberman, M. Hochberg, and D. Thompson, Meta-analysis of the efficacy of alendronate for the prevention of hip fractures in postmenopausal women, Osteoporosis International, vol.343, issue.5, pp.468-74, 2005.
DOI : 10.1007/s00198-004-1725-z

M. Rogers, New Insights Into the Molecular Mechanisms of Action of Bisphosphonates, Current Pharmaceutical Design, vol.9, issue.32, pp.2643-58, 2003.
DOI : 10.2174/1381612033453640

R. Russell, Bisphosphonates, Bone, vol.49, pp.2-19, 2011.
DOI : 10.1016/B978-0-407-02273-7.50010-5

E. Verron and J. Bouler, Is bisphosphonate therapy compromised by the emergence of adverse bone disorders?, Drug Discovery Today, vol.19, issue.3, pp.312-321, 2014.
DOI : 10.1016/j.drudis.2013.08.010

J. Cramer, D. Gold, S. Silverman, and E. Lewiecki, A systematic review of persistence and compliance with bisphosphonates for osteoporosis, Osteoporosis International, vol.17, issue.8, pp.1023-1054, 2007.
DOI : 10.4158/EP.12.5.522

S. Garfin, H. Yuan, and M. Reiley, New Technologies in Spine, Spine, vol.26, issue.14, pp.1511-1516, 1976.
DOI : 10.1097/00007632-200107150-00002

R. Groen, D. Du-toit, F. Phillips, P. Hoogland, K. Kuizenga et al., Anatomical and Pathological Considerations in Percutaneous Vertebroplasty and Kyphoplasty: A Reappraisal of the Vertebral Venous System, Spine, vol.29, issue.13, pp.1465-71, 1976.
DOI : 10.1097/01.BRS.0000128758.64381.75

P. Galibert, H. Deramond, P. Rosat, L. Gars, and D. , Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty, Neurochirurgie, vol.33, pp.166-174, 1987.

S. Belkoff, J. Mathis, E. Erbe, and D. Fenton, Biomechanical Evaluation of a New Bone Cement for Use in Vertebroplasty, Spine, vol.25, issue.9, pp.1061-1065, 1976.
DOI : 10.1097/00007632-200005010-00004

L. Jasper, H. Deramond, J. Mathis, and S. Belkoff, Material properties of various cements for use with vertebroplasty, Journal of Materials Science: Materials in Medicine, vol.13, issue.1, pp.1-5, 2002.
DOI : 10.1023/A:1013673830184

T. Lim, G. Brebach, S. Renner, W. Kim, J. Kim et al., Biomechanical Evaluation of an Injectable Calcium Phosphate Cement for Vertebroplasty, Spine, vol.27, issue.12, pp.1297-302, 1976.
DOI : 10.1097/00007632-200206150-00010

S. Tarsuslugil, O. Hara, R. Dunne, N. Buchanan, F. Orr et al., Development of calcium phosphate cement for the augmentation of traumatically fractured porcine specimens using vertebroplasty, Journal of Biomechanics, vol.46, issue.4, pp.711-716, 2013.
DOI : 10.1016/j.jbiomech.2012.11.036

M. Nakano, Y. Kawaguchi, T. Kimura, and N. Hirano, Transpedicular vertebroplasty after intravertebral cavity formation versus conservative treatment for osteoporotic burst fractures, The Spine Journal, vol.14, issue.1, pp.39-48, 2014.
DOI : 10.1016/j.spinee.2013.03.016

S. Josse, C. Faucheux, A. Soueidan, G. Grimandi, D. Massiot et al., Novel biomaterials for bisphosphonate delivery, Biomaterials, vol.26, issue.14, pp.2073-80, 2005.
DOI : 10.1016/j.biomaterials.2004.05.019

URL : https://hal.archives-ouvertes.fr/hal-00012225

S. Josse, C. Faucheux, G. Grimandi, A. Massiot, B. Alonso et al., Chemically Modified Calcium Phosphates as Novel Materials for Bisphosphonate Delivery, Advanced Materials, vol.16, issue.16, pp.1423-1430, 2004.
DOI : 10.1002/adma.200306340

H. Roussiere, G. Montavon, S. Laib, P. Janvier, A. B. Fayon et al., Hybrid materials applied to biotechnologies: coating of calcium phosphates for the design of implants active against bone resorption disorders, Journal of Materials Chemistry, vol.40, issue.35-36, pp.3869-75, 2005.
DOI : 10.1093/jnci/94.19.1458

URL : https://hal.archives-ouvertes.fr/hal-00017044

E. Verron, I. Khairoun, J. Guicheux, and J. Bouler, Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discovery Today, vol.15, issue.13-14, pp.547-52, 2010.
DOI : 10.1016/j.drudis.2010.05.003

S. Parratte, T. Amphoux, S. Kolta, O. Gagey, W. Skalli et al., Femoroplasty using an injectable and resorbable calcium phosphate bisphosphonate loaded bone substitute to prevent contra-lateral hip fracture in the elderly: a cadaveric biomechanical study, Osteoporos Int, vol.21, pp.346-353, 2010.

J. Zhang, W. Liu, V. Schnitzler, F. Tancret, and J. Bouler, Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties, Acta Biomaterialia, vol.10, issue.3, pp.1035-1084, 2013.
DOI : 10.1016/j.actbio.2013.11.001

URL : https://hal.archives-ouvertes.fr/hal-00988847

E. Verron, J. Bouler, and J. Guicheux, Controlling the biological function of calcium phosphate bone substitutes with drugs, Acta Biomaterialia, vol.8, issue.10, pp.3541-51, 2012.
DOI : 10.1016/j.actbio.2012.06.022

E. Boanini, P. Torricelli, M. Gazzano, R. Giardino, and A. Bigi, Alendronate???hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells, Biomaterials, vol.29, issue.7, pp.790-796, 2008.
DOI : 10.1016/j.biomaterials.2007.10.040

C. Faucheux, E. Verron, A. Soueidan, S. Josse, M. Arshad et al., Controlled release of bisphosphonate from a calcium phosphate biomaterial inhibits osteoclastic resorption in vitro, J Biomed Mater Res A, pp.46-56, 2008.

B. Peter, D. Pioletti, S. Laib, B. Bujoli, P. Pilet et al., Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration, Bone, vol.36, issue.1, pp.52-60, 2005.
DOI : 10.1016/j.bone.2004.10.004

URL : https://infoscience.epfl.ch/record/88230/files/Bone2005.pdf

B. Peter, O. Gauthier, S. Laib, B. Bujoli, J. Guicheux et al., Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats, Journal of Biomedical Materials Research Part A, vol.25, issue.1, pp.133-176, 2006.
DOI : 10.1007/978-2-8178-0851-2

URL : https://hal.archives-ouvertes.fr/hal-00320922

E. Verron, O. Gauthier, P. Janvier, P. Pilet, J. Lesoeur et al., In vivo bone augmentation in an osteoporotic environment using bisphosphonate-loaded calcium deficient apatite, Biomaterials, vol.31, issue.30, pp.7776-84, 2010.
DOI : 10.1016/j.biomaterials.2010.06.047

V. Schnitzler, F. Fayon, C. Despas, I. Khairoun, C. Mellier et al., Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: Critical influence of the drug introduction mode on the in vitro cement properties, Acta Biomaterialia, vol.7, issue.2, pp.759-70, 2011.
DOI : 10.1016/j.actbio.2010.09.017

URL : https://hal.archives-ouvertes.fr/hal-00608513

L. Obadia, T. Rouillon, B. Bujoli, G. Daculsi, and J. Bouler, Calcium-deficient apatite synthesized by ammonia hydrolysis of dicalcium phosphate dihydrate: Influence of temperature, time, and pressure, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.51, issue.381, pp.32-42, 2007.
DOI : 10.1177/00220345850640010301

URL : https://hal.archives-ouvertes.fr/hal-00320964

K. Ishikawa, P. Ducheyne, and S. Radin, Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis, Journal of Materials Science: Materials in Medicine, vol.22, issue.2, pp.165-173, 1993.
DOI : 10.1007/BF00120386

J. Bobyn, K. Mckenzie, D. Karabasz, J. Krygier, and M. Tanzer, Locally Delivered Bisphosphonate for Enhancement of Bone Formation and Implant Fixation, The Journal of Bone and Joint Surgery-American Volume, vol.91, issue.Suppl 6, pp.23-31, 2009.
DOI : 10.2106/JBJS.I.00518

J. Bobyn, R. Thompson, L. Lim, J. Pura, K. Bobyn et al., Local Alendronic Acid Elution Increases Net Periimplant Bone Formation: A Micro-CT Analysis, Clinical Orthopaedics and Related Research??, vol.472, issue.2, pp.687-94, 2014.
DOI : 10.1007/s11999-013-3120-6

URL : http://europepmc.org/articles/pmc3890192?pdf=render

M. Tanzer, D. Karabasz, J. Krygier, R. Cohen, and J. Bobyn, THE OTTO AUFRANC AWARD: Bone Augmentation around and within Porous Implants by Local Bisphosphonate Elution, Clinical Orthopaedics and Related Research, vol.441, issue.&NA;, pp.30-39, 2005.
DOI : 10.1097/01.blo.0000194728.62996.2d

J. Zhang, W. Liu, V. Schnitzler, F. Tancret, and J. Bouler, Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties, Acta Biomaterialia, vol.10, issue.3, pp.1035-1084, 2014.
DOI : 10.1016/j.actbio.2013.11.001

URL : https://hal.archives-ouvertes.fr/hal-00988847

A. Turner, M. Alvis, W. Myers, M. Stevens, and M. Lundy, Changes in bone mineral density and bone-specific alkaline phosphatase in ovariectomized ewes, Bone, vol.17, issue.4, pp.395-402, 1995.
DOI : 10.1016/8756-3282(95)00317-7

A. Turner, C. Mallinckrodt, M. Alvis, and H. Bryant, Dose-response effects of estradiol implants on bone mineral density in ovariectomized ewes, Bone, vol.17, issue.4, pp.421-428, 1995.
DOI : 10.1016/8756-3282(95)00321-4

P. Chavassieux, P. Garnero, F. Duboeuf, P. Vergnaud, F. Brunner-ferber et al., Effects of a New Selective Estrogen Receptor Modulator (MDL 103,323) on Cancellous and Cortical Bone in Ovariectomized Ewes: A Biochemical, Histomorphometric, and Densitometric Study, Journal of Bone and Mineral Research, vol.139, issue.Suppl, pp.89-96, 2001.
DOI : 10.1359/jbmr.2001.16.1.89

B. Newton, R. Cooper, J. Gilbert, R. Johnson, and L. Zardiackas, The Ovariectomized Sheep as a Model for Human Bone Loss, Journal of Comparative Pathology, vol.130, issue.4, pp.323-329, 2004.
DOI : 10.1016/j.jcpa.2003.12.007

G. Dvorak, K. Reich, S. Tangl, J. Goldhahn, R. Haas et al., Cortical porosity of the mandible in an osteoporotic sheep model, Clinical Oral Implants Research, vol.32, issue.5, pp.500-505, 2010.
DOI : 10.1259/dmfr/12560890

K. Nishiyama, H. Macdonald, H. Buie, D. Hanley, and S. Boyd, HR-pQCT Study, Journal of Bone and Mineral Research, vol.25, pp.882-90, 2010.
DOI : 10.1359/jbmr.091020

A. Ostertag, M. Cohen-solal, M. Audran, E. Legrand, C. Marty et al., Vertebral fractures are associated with increased cortical porosity in iliac crest bone biopsy of men with idiopathic osteoporosis, Bone, vol.44, issue.3, pp.413-420, 2009.
DOI : 10.1016/j.bone.2008.11.004

R. Mccalden, J. Mcgeough, M. Barker, and C. Court-brown, Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure., The Journal of Bone & Joint Surgery, vol.75, issue.8, pp.1193-205, 1993.
DOI : 10.2106/00004623-199308000-00009

V. Stadelmann, O. Gauthier, A. Terrier, J. Bouler, and D. Pioletti, Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study, European Cells and Materials, vol.16, pp.10-16, 2008.
DOI : 10.22203/eCM.v016a02

URL : http://doi.org/10.22203/ecm.v016a02

P. Chen, C. Jerome, D. Burr, C. Turner, Y. Ma et al., Interrelationships Between Bone Microarchitecture and Strength in Ovariectomized Monkeys Treated With Teriparatide, Journal of Bone and Mineral Research, vol.7, issue.Suppl 2, pp.841-849, 2007.
DOI : 10.2106/00004623-196648020-00008

URL : http://onlinelibrary.wiley.com/doi/10.1359/jbmr.070310/pdf

M. Ginebra, T. Traykova, and J. Planell, Calcium phosphate cements as bone drug delivery systems: A review, Journal of Controlled Release, vol.113, issue.2, pp.102-112, 2006.
DOI : 10.1016/j.jconrel.2006.04.007

E. Verron, J. Bouler, and J. Guicheux, Controlling the biological function of calcium phosphate bone substitutes with drugs, Acta Biomaterialia, vol.8, issue.10, pp.3541-51, 2012.
DOI : 10.1016/j.actbio.2012.06.022

M. Bohner and G. Baroud, Injectability of calcium phosphate pastes, Biomaterials, vol.26, issue.13, pp.1553-63, 2005.
DOI : 10.1016/j.biomaterials.2004.05.010

M. Habib, G. Baroud, L. Galea, and M. Bohner, Evaluation of the ultrasonication process for injectability of hydraulic calcium phosphate pastes, Acta Biomaterialia, vol.8, issue.3, pp.1164-1172, 2012.
DOI : 10.1016/j.actbio.2011.10.032