C. L. Bell, B. L. Gurda, K. Van-vliet, M. Agbandje-mckenna, W. et al., Identification of the Galactose Binding Domain of the Adeno-Associated Virus Serotype 9 Capsid, Journal of Virology, vol.86, issue.13, pp.7326-7333, 2012.
DOI : 10.1128/JVI.00448-12

S. Bleker, M. Pawlita, and J. A. Kleinschmidt, Impact of Capsid Conformation and Rep-Capsid Interactions on Adeno-Associated Virus Type 2 Genome Packaging, Journal of Virology, vol.80, issue.2, pp.810-820, 2006.
DOI : 10.1128/JVI.80.2.810-820.2006

M. A. Dimattia, H. J. Nam, K. Van-vliet, M. Mitchell, A. Bennett et al., Structural Insight into the Unique Properties of Adeno-Associated Virus Serotype 9, Journal of Virology, vol.86, issue.12, 2012.
DOI : 10.1128/JVI.07232-11

, J. Virol, vol.86, pp.6947-6958

L. F. Earley, Y. Kawano, K. Adachi, X. X. Sun, M. S. Dai et al., , 2015.

, Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein, J. Virol, vol.89, pp.3038-3048

L. F. Earley, J. M. Powers, K. Adachi, J. T. Baumgart, N. L. Meyer et al., ABSTRACT, Journal of Virology, vol.91, issue.3, pp.1980-1996, 2017.
DOI : 10.1128/JVI.01980-16

K. D. Foust, E. Nurre, C. L. Montgomery, A. Hernandez, C. M. Chan et al., Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes, Nature Biotechnology, vol.94, issue.1, pp.59-65, 2009.
DOI : 10.1172/JCI22922

N. Gabriel, S. Hareendran, D. Sen, R. A. Gadkari, G. Sudha et al., Human Gene Therapy Methods, vol.24, issue.2, pp.80-93, 2013.
DOI : 10.1089/hgtb.2012.194

G. Gao, L. H. Vandenberghe, M. R. Alvira, Y. Lu, R. Calcedo et al., Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues, Journal of Virology, vol.78, issue.12, pp.6381-6388, 2004.
DOI : 10.1128/JVI.78.12.6381-6388.2004

G. Gao, L. H. Vandenberghe, W. , and J. M. , New Recombinant Serotypes of AAV Vectors, Current Gene Therapy, vol.5, issue.3, pp.285-297, 2005.
DOI : 10.2174/1566523054065057

A. Girod, C. E. Wobus, Z. Zá-dori, M. Ried, K. Leike et al., The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity, Journal of General Virology, vol.1, issue.5, pp.973-978, 2002.
DOI : 10.1016/S1534-5807(01)00031-4

J. C. Grieger, S. Snowdy, and R. J. Samulski, Separate Basic Region Motifs within the Adeno-Associated Virus Capsid Proteins Are Essential for Infectivity and Assembly, Journal of Virology, vol.80, issue.11, pp.5199-5210, 2006.
DOI : 10.1128/JVI.02723-05

D. Grimm and S. Zolotukhin, E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal???Tailored Acceleration of AAV Evolution, Molecular Therapy, vol.23, issue.12, pp.1819-1831, 2015.
DOI : 10.1038/mt.2015.173

S. Grosse, M. Penaud-budloo, A. K. Herrmann, K. Bö-rner, J. Fakhiri et al., ABSTRACT, Journal of Virology, vol.91, issue.20, pp.1198-1215, 2017.
DOI : 10.1128/JVI.01198-17

A. Kern, K. Schmidt, C. Leder, O. J. M?-uller, C. E. Wobus et al., Identification of a Heparin-Binding Motif on Adeno-Associated Virus Type 2 Capsids, Journal of Virology, vol.77, issue.20, pp.11072-11081, 2003.
DOI : 10.1128/JVI.77.20.11072-11081.2003

M. A. Kotterman and D. V. Schaffer, Engineering adeno-associated viruses for clinical gene therapy, Nature Reviews Genetics, vol.434, issue.7, pp.445-451, 2014.
DOI : 10.1016/j.ymthe.2006.05.009

L. D. Landegger, B. Pan, C. Askew, S. J. Wassmer, S. D. Gluck et al., A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear, Nature Biotechnology, vol.66, issue.3, pp.280-284, 2017.
DOI : 10.1007/s00221-012-3034-7

M. A. Lochrie, G. P. Tatsuno, B. Christie, J. W. Mcdonnell, S. Zhou et al., Mutations on the External Surfaces of Adeno-Associated Virus Type 2 Capsids That Affect Transduction and Neutralization, Journal of Virology, vol.80, issue.2, pp.821-834, 2006.
DOI : 10.1128/JVI.80.2.821-834.2006

H. J. Nam, M. D. Lane, E. Padron, B. Gurda, R. Mckenna et al., Structure of Adeno-Associated Virus Serotype 8, a Gene Therapy Vector, Journal of Virology, vol.81, issue.22, pp.12260-12271, 2007.
DOI : 10.1128/JVI.01304-07

M. Naumer, F. Sonntag, K. Schmidt, K. Nieto, C. Panke et al., Properties of the Adeno-Associated Virus Assembly-Activating Protein, Journal of Virology, vol.86, issue.23, pp.13038-13048, 2012.
DOI : 10.1128/JVI.01675-12

URL : http://jvi.asm.org/content/86/23/13038.full.pdf

S. C. Nicolson and R. J. Samulski, Recombinant Adeno-Associated Virus Utilizes Host Cell Nuclear Import Machinery To Enter the Nucleus, Journal of Virology, vol.88, issue.8, pp.4132-4144, 2014.
DOI : 10.1128/JVI.02660-13

URL : http://jvi.asm.org/content/88/8/4132.full.pdf

S. Pacouret, M. Bouzelha, R. Shelke, E. Andres-mateos, R. Xiao et al., , 2017.

A. , A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations, Mol. Ther, vol.25, pp.1375-1386

S. Pillay, N. L. Meyer, A. S. Puschnik, O. Davulcu, J. Diep et al., J.E, 2016.

, An essential receptor for adeno-associated virus infection, Nature, vol.530, pp.108-112

R. Popa-wagner, M. Porwal, M. Kann, M. Reuss, M. Weimer et al., Impact of VP1-Specific Protein Sequence Motifs on Adeno-Associated Virus Type 2 Intracellular Trafficking and Nuclear Entry, Journal of Virology, vol.86, issue.17, pp.9163-9174, 2012.
DOI : 10.1128/JVI.00282-12

D. Sen, R. A. Gadkari, G. Sudha, N. Gabriel, Y. S. Kumar et al., Targeted modifications, Cell Reports, vol.23, pp.1817-1830, 2013.

, in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo, Hum. Gene Ther. Methods, vol.24, pp.104-116

F. Sonntag, K. Schmidt, and J. A. Kleinschmidt, A viral assembly factor promotes AAV2 capsid formation in the nucleolus, Proc. Natl. Acad. Sci. USA, pp.10220-10225, 2010.
DOI : 10.1016/j.jviromet.2006.10.005

F. Sonntag, K. Kö-ther, K. Schmidt, M. Weghofer, C. Raupp et al., The Assembly-Activating Protein Promotes Capsid Assembly of Different Adeno-Associated Virus Serotypes, Journal of Virology, vol.85, issue.23, pp.12686-12697, 2011.
DOI : 10.1128/JVI.05359-11

S. Steinbach, A. Wistuba, T. Bock, and J. A. Kleinschmidt, Assembly of adeno-associated virus type 2 capsids in vitro., Journal of General Virology, vol.78, issue.6, pp.1453-1462, 1997.
DOI : 10.1099/0022-1317-78-6-1453

C. E. Thomas, T. A. Storm, Z. Huang, and M. A. Kay, Rapid Uncoating of Vector Genomes Is the Key to Efficient Liver Transduction with Pseudotyped Adeno-Associated Virus Vectors, Journal of Virology, vol.78, issue.6, pp.3110-3122, 2004.
DOI : 10.1128/JVI.78.6.3110-3122.2004

L. H. Vandenberghe, J. M. Wilson, and G. Gao, Tailoring the AAV vector capsid for gene therapy, Gene Therapy, vol.81, issue.3, pp.311-319, 2009.
DOI : 10.1038/gt.2008.170

A. Wistuba, S. Weger, A. Kern, and J. A. Kleinschmidt, Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins, J. Virol, vol.69, pp.5311-5319, 1995.

A. Wistuba, A. Kern, S. Weger, D. Grimm, and J. A. Kleinschmidt, , 1997.

, Subcellular compartmentalization of adeno-associated virus type 2 assembly, J. Virol, vol.71, pp.1341-1352

P. Wu, W. Xiao, T. Conlon, J. Hughes, M. Agbandje-mckenna et al., Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism, Journal of Virology, vol.74, issue.18, pp.8635-8647, 2000.
DOI : 10.1128/JVI.74.18.8635-8647.2000

Z. Yan, R. Zak, G. W. Luxton, T. C. Ritchie, U. Bantel-schaal et al., Ubiquitination of both Adeno-Associated Virus Type 2 and 5 Capsid Proteins Affects the Transduction Efficiency of Recombinant Vectors, Journal of Virology, vol.76, issue.5, pp.2043-2053, 2002.
DOI : 10.1128/jvi.76.5.2043-2053.2002

L. Zhong, B. Li, G. Jayandharan, C. S. Mah, L. Govindasamy et al., Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression, Virology, vol.381, issue.2, pp.194-202, 2008.
DOI : 10.1016/j.virol.2008.08.027

E. Zinn, S. Pacouret, V. Khaychuk, H. T. Turunen, L. S. Carvalho et al., In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector, Cell Reports, vol.12, issue.6, pp.1056-1068, 2015.
DOI : 10.1016/j.celrep.2015.07.019