S. Allabash, T. Nicolai, L. Benyahia, J. Tassin, and C. Chassenieux, Evidence for the co-existence of interpenetrating permanent and transient networks of hydroxypropyl methyl cellulose, Biomacromolecules, vol.15, pp.311-318, 2014.

A. A. Ashley and S. N. Lakshmi, Injectable hydrogels for bone and cartilage repair, Biomedical Materials, vol.7, issue.2, p.24105, 2012.

R. Bodvik, A. Dedinaite, L. Karlson, M. Bergstrom, P. Baverback et al., Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions, Colloids and Surfaces A: Physicochemical and Engineering, pp.162-171, 2010.
DOI : 10.1016/j.colsurfa.2009.09.040

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.99-215, 2002.
DOI : 10.1016/S0001-8686(02)00035-0

URL : https://hal.archives-ouvertes.fr/inserm-00198799

J. L. Drury and D. J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, vol.24, issue.24, pp.24-4337, 2003.
DOI : 10.1016/S0142-9612(03)00340-5

J. P. Fairclough, H. Yu, O. Kelly, A. J. Ryan, R. L. Sammler et al., Interplay between Gelation and Phase Separation in Aqueous Solutions of Methylcellulose and Hydroxypropylmethylcellulose, Langmuir, vol.28, issue.28, pp.28-10551, 2012.
DOI : 10.1021/la300971r

A. Fatimi, M. A. Axelos, J. F. Tassin, and P. Weiss, Rheological Characterization of Self???Hardening Hydrogel for Tissue Engineering Applications: Gel Point Determination and Viscoelastic Properties, Macromolecular Symposia, vol.64, issue.1, pp.12-16, 2008.
DOI : 10.1002/masy.200850603

URL : https://hal.archives-ouvertes.fr/inserm-00383359

A. Fatimi, J. F. Tassin, S. Quillard, M. A. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, issue.5, pp.29-533, 2008.
DOI : 10.1016/j.biomaterials.2007.10.032

URL : https://hal.archives-ouvertes.fr/inserm-00383358

A. Fatimi, J. O. Tassin, R. Turczyn, M. A. Axelos, and P. Weiss, Gelation studies of a cellulose-based biohydrogel: The influence of pH, temperature and sterilization, Acta Biomaterialia, vol.5, issue.9, pp.3423-3432, 2009.
DOI : 10.1016/j.actbio.2009.05.030

URL : https://hal.archives-ouvertes.fr/inserm-00507127

S. Fiejdasz, K. Szczubia?ka, J. Lewandowska-?á-ncucka, A. M. Osyczka, and M. Nowakowska, Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds, Biomedical Materials, vol.8, issue.3, p.35013, 2013.
DOI : 10.1088/1748-6041/8/3/035013

A. Haque and E. R. Morris, Thermogelation of methylcellulose. Part I: molecular structures and processes, Carbohydrate Polymers, vol.22, issue.3, pp.161-173, 1993.
DOI : 10.1016/0144-8617(93)90137-S

A. Haque, R. K. Richardson, E. R. Morris, M. J. Gidley, and D. C. Caswell, Thermogelation of methylcellulose. Part II: effect of hydroxypropyl substituents, Carbohydrate Polymers, vol.22, issue.3, pp.175-186, 1993.
DOI : 10.1016/0144-8617(93)90138-T

S. Hussain, C. Keary, and D. Q. Craig, A thermorheological investigation into the gelation and phase separation of hydroxypropyl methylcellulose aqueous systems, Polymer, vol.43, issue.21, pp.43-5623, 2002.
DOI : 10.1016/S0032-3861(02)00430-5

S. C. Joshi, Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release, Materials, vol.60, issue.10, pp.1861-1905, 2011.
DOI : 10.1016/S0168-3659(99)00104-2

D. J. Overstreet, D. Dutta, S. E. Stabenfeldt, and B. L. Vernon, Injectable hydrogels, Journal of Polymer Science Part B: Polymer Physics, vol.30, issue.13, pp.50-881, 2012.
DOI : 10.1016/j.biomaterials.2009.08.015

N. Sarkar, Thermal gelation properties of methyl and hydroxypropyl methylcellulose, Journal of Applied Polymer Science, vol.24, issue.4, pp.1073-1087, 1979.
DOI : 10.1002/app.1979.070240420

S. R. Silva, F. T. Pinto, F. E. Antunes, M. G. Miguel, and J. Sousa, Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions, Journal of Colloid and Interface Science, vol.327, issue.2, pp.333-340, 2008.
DOI : 10.1016/j.jcis.2008.08.056

S. Van-vlierberghe, P. Dubruel, and E. Schacht, Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review, Biomacromolecules, vol.12, issue.5, pp.1387-1408, 2011.
DOI : 10.1021/bm200083n

C. Vinatier, J. Guicheux, G. Daculsi, P. Layrolle, and P. Weiss, Cartilage and bone tissue engineering using hydrogels, Bio-Medical Materials and Engineering, vol.16, pp.107-113, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00166078

C. Vinatier, D. Magne, P. Weiss, C. Trojani, N. Rochet et al., A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, issue.33, pp.26-6643, 2005.
DOI : 10.1016/j.biomaterials.2005.04.057

URL : https://hal.archives-ouvertes.fr/inserm-00110465

P. Weiss, C. Vinatier, J. Sohier, A. Fatimi, P. Layrolle et al., Self???Hardening Hydrogel for Bone Tissue Engineering, Macromolecular Symposia, vol.47, issue.1, pp.30-35, 2008.
DOI : 10.1002/jbm.a.30867

Y. J. Yoo and I. C. Um, Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology, Korea-Australia Rheology Journal, vol.12, issue.2, pp.67-75, 2013.
DOI : 10.1007/s00542-005-0051-5