, Traumatol Arthrosc, vol.21, pp.1717-1729, 2013.

F. Veronesi, G. Giavaresi, M. Tschon, V. Borsari, N. Aldini et al., Clinical Use of Bone Marrow, Bone Marrow Concentrate, and Expanded Bone Marrow Mesenchymal Stem Cells in Cartilage Disease, Stem Cells and Development, vol.22, issue.2, pp.181-192, 2013.
DOI : 10.1089/scd.2012.0373

A. Roelofs, J. Rocke, D. Bari, and C. , Cell-based approaches to joint surface repair: a research perspective, Osteoarthritis and Cartilage, vol.21, issue.7, pp.892-900, 2013.
DOI : 10.1016/j.joca.2013.04.008

D. Gawlitta, E. Farrell, J. Malda, L. Creemers, J. Alblas et al., Modulating Endochondral Ossification of Multipotent Stromal Cells for Bone Regeneration, Tissue Engineering Part B: Reviews, vol.16, issue.4, pp.385-395, 2010.
DOI : 10.1089/ten.teb.2009.0712

H. Kronenberg, Developmental regulation of the growth plate, Nature, vol.153, issue.6937, pp.332-336, 2003.
DOI : 10.1083/jcb.153.1.87

F. Barry, R. Boynton, B. Liu, and J. Murphy, Chondrogenic Differentiation of Mesenchymal Stem Cells from Bone Marrow: Differentiation-Dependent Gene Expression of Matrix Components, Experimental Cell Research, vol.268, issue.2, pp.189-200, 2001.
DOI : 10.1006/excr.2001.5278

C. Coleman, E. Vaughan, D. Browe, E. Mooney, L. Howard et al., Growth Differentiation Factor-5 Enhances In Vitro Mesenchymal Stromal Cell Chondrogenesis and Hypertrophy, Stem Cells and Development, vol.22, issue.13, pp.1968-1976, 2013.
DOI : 10.1089/scd.2012.0282

S. Ichinose, M. Tagami, T. Muneta, and I. Sekiya, Morphological examination during in vitro cartilage formation by human mesenchymal stem cells, Cell and Tissue Research, vol.80, issue.2, pp.217-226, 2005.
DOI : 10.1177/32.3.6693757

J. Lee and G. Im, PTHrP isoforms have differing effect on chondrogenic differentiation and hypertrophy of mesenchymal stem cells, Biochemical and Biophysical Research Communications, vol.421, issue.4, pp.819-824, 2012.
DOI : 10.1016/j.bbrc.2012.04.096

M. Mueller, M. Fischer, J. Zellner, A. Berner, T. Dienstknecht et al., Hypertrophy in Mesenchymal Stem Cell Chondrogenesis: Effect of TGF-?? Isoforms and Chondrogenic Conditioning, Cells Tissues Organs, vol.192, issue.3, pp.158-166, 2010.
DOI : 10.1159/000313399

M. Mueller and R. Tuan, Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells, Arthritis & Rheumatism, vol.7, issue.5, pp.1377-1388, 2008.
DOI : 10.1016/S0002-9440(10)63024-6

A. Steinert, B. Proffen, M. Kunz, C. Hendrich, S. Ghivizzani et al., Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer, Arthritis Research & Therapy, vol.11, issue.5, p.148, 2009.
DOI : 10.1186/ar2822

A. Dickhut, K. Pelttari, P. Janicki, W. Wagner, V. Eckstein et al., Calcification or dedifferentiation: Requirement to lock mesenchymal stem cells in a desired differentiation stage, Journal of Cellular Physiology, vol.48, issue.1, pp.219-226, 2009.
DOI : 10.1016/S0002-9440(10)65003-1

K. Pelttari, A. Winter, E. Steck, K. Goetzke, T. Hennig et al., Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice, Arthritis & Rheumatism, vol.423, issue.10, pp.3254-3266, 2006.
DOI : 10.1007/BF02991574

J. Haselgrove, I. Shapiro, and S. Silverton, Computer modeling of the oxygen supply and demand of cells of the avian growth cartilage, American Journal of Physiology-Cell Physiology, vol.263, issue.2, pp.497-506, 1993.
DOI : 10.1016/8756-3282(89)90146-4

, IA: Measurement of ph and ionic composition of pericellular sites, Philos Trans R Soc Lond B Biol Sci, vol.271, pp.261-272, 1975.

, Cell Physiol Biochem, vol.35, pp.841-857, 2015.

S. Karger and A. , , 2015.

. Portron, O 2 Tension Regulates Early and Late Chondrogenesis Cellular Physiology and Biochemistry Cellular Physiology and Biochemistry

S. Zhou, Z. Cui, and J. Urban, Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: A modeling study, Arthritis & Rheumatism, vol.14, issue.12, pp.3915-3924, 2004.
DOI : 10.1113/expphysiol.1995.sp003841

V. Meretoja, R. Dahlin, S. Wright, F. Kasper, and A. Mikos, The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds, Biomaterials, vol.34, issue.17, pp.4266-4273, 2013.
DOI : 10.1016/j.biomaterials.2013.02.064

E. Sheehy, C. Buckley, and D. Kelly, Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells, Biochemical and Biophysical Research Communications, vol.417, issue.1, pp.305-310, 2012.
DOI : 10.1016/j.bbrc.2011.11.105

R. Amarilio, S. Viukov, A. Sharir, I. Eshkar-oren, R. Johnson et al., HIF1?? regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis, Development, vol.134, issue.21, pp.3917-3928, 2007.
DOI : 10.1242/dev.008441

D. Gawlitta, M. Van-rijen, E. Schrijver, J. Alblas, and W. Dhert, Hypoxia Impedes Hypertrophic Chondrogenesis of Human Multipotent Stromal Cells, Tissue Engineering Part A, vol.18, issue.19-20, pp.1957-1966, 2012.
DOI : 10.1089/ten.tea.2011.0657

M. Hirao, N. Tamai, N. Tsumaki, H. Yoshikawa, and A. Myoui, Oxygen Tension Regulates Chondrocyte Differentiation and Function during Endochondral Ossification, Journal of Biological Chemistry, vol.17, issue.Suppl. 1, pp.31079-31092, 2006.
DOI : 10.1093/emboj/17.19.5718

M. Pittenger, A. Mackay, S. Beck, R. Jaiswal, R. Douglas et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, vol.284, issue.5411, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

M. Strioga, S. Viswanathan, A. Darinskas, O. Slaby, and J. Michalek, Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells, Stem Cells and Development, vol.21, issue.14, pp.2724-2752, 2012.
DOI : 10.1089/scd.2011.0722

P. Zuk, M. Zhu, P. Ashjian, D. Ugarte, D. Huang et al., Human Adipose Tissue Is a Source of Multipotent Stem Cells, Molecular Biology of the Cell, vol.7, issue.12, pp.4279-4295, 2002.
DOI : 10.1089/107632701300062859

T. Hennig, H. Lorenz, A. Thiel, K. Goetzke, A. Dickhut et al., Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGF?? receptor and BMP profile and is overcome by BMP-6, Journal of Cellular Physiology, vol.13, issue.3, pp.682-691, 2007.
DOI : 10.3349/ymj.2004.45.Suppl.41

H. Kim and G. Im, The Effects of ERK1/2 Inhibitor on the Chondrogenesis of Bone Marrow??? and Adipose Tissue???Derived Multipotent Mesenchymal Stromal Cells, Tissue Engineering Part A, vol.16, issue.3, pp.851-860, 2009.
DOI : 10.1089/ten.tea.2009.0070

A. Mehlhorn, P. Niemeyer, K. Kaschte, L. Muller, G. Finkenzeller et al., Differential effects of BMP-2 and TGF-??1 on chondrogenic differentiation of adipose derived stem cells, Cell Proliferation, vol.8, issue.6, pp.809-823, 2007.
DOI : 10.1089/107632701300062859

C. Merceron, S. Portron, M. Masson, B. Fellah, O. Gauthier et al., Cartilage tissue engineering: From hydrogel to mesenchymal stem cells, Biomed Mater Eng, vol.20, pp.159-166, 2010.

F. Geronimi, E. Richard, I. Lamrissi-garcia, M. Lalanne, C. Ged et al., Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells, Journal of Molecular Medicine, vol.9, issue.5, pp.310-320, 2003.
DOI : 10.1038/sj.cgt.7700490

C. Merceron, S. Portron, C. Vignes-colombeix, E. Rederstorff, M. Masson et al., Pharmacological Modulation of Human Mesenchymal Stem Cell Chondrogenesis by a Chemically Oversulfated Polysaccharide of Marine Origin: Potential Application to Cartilage Regenerative Medicine, STEM CELLS, vol.71, issue.4, pp.471-480, 2012.
DOI : 10.1159/000093553

E. Duval, S. Leclercq, J. Elissalde, M. Demoor, P. Galera et al., Hypoxia-inducible factor 1?? inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation: Hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1??-dependent redifferentiation of chondrocytes, Arthritis & Rheumatism, vol.293, issue.10, pp.3038-3048, 2009.
DOI : 10.1002/humu.1380110137

D. Magne, G. Bluteau, S. Lopez-cazaux, P. Weiss, P. Pilet et al., Development of an Odontoblast In Vitro Model to Study Dentin Mineralization, Connective Tissue Research, vol.8, issue.2, pp.101-108, 2004.
DOI : 10.1006/dbio.1994.1063

URL : https://hal.archives-ouvertes.fr/inserm-00175147

R. Andriamanalijaona, N. Felisaz, S. Kim, K. , K. Lehmann et al., Mediation of interleukin-1?-induced transforming growth factor ?1 expression by activator protein 4 transcription factor in primary cultures of bovine articular chondrocytes: Possible cooperation with activator protein 1, Arthritis & Rheumatism, vol.32, issue.6, pp.1569-1581, 2003.
DOI : 10.1093/rheumatology/32.4.281

T. Atsumi, Y. Miwa, K. Kimata, and Y. Ikawa, A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells, Cell Differentiation and Development, vol.30, issue.2, pp.109-116, 1990.
DOI : 10.1016/0922-3371(90)90079-C

, Cell Physiol Biochem, vol.35, pp.841-857, 2015.

S. Karger and A. , , 2015.

. Portron, O 2 Tension Regulates Early and Late Chondrogenesis Cellular Physiology and Biochemistry Cellular Physiology and Biochemistry

C. Shukunami, K. Ishizeki, T. Atsumi, Y. Ohta, F. Suzuki et al., Cellular Hypertrophy and Calcification of Embryonal Carcinoma-Derived Chondrogenic Cell Line ATDC5 In Vitro, Journal of Bone and Mineral Research, vol.130, issue.8, pp.1174-1188, 1997.
DOI : 10.2106/00004623-199304000-00009

B. Markway, G. Tan, G. Brooke, J. Hudson, J. Cooper-white et al., Enhanced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells in Low Oxygen Environment Micropellet Cultures, Cell Transplantation, vol.190, issue.2, pp.29-42, 2010.
DOI : 10.1159/000178024

D. Magne, G. Bluteau, C. Faucheux, G. Palmer, C. Vignes-colombeix et al., Phosphate Is a Specific Signal for ATDC5 Chondrocyte Maturation and Apoptosis-Associated Mineralization: Possible Implication of Apoptosis in the Regulation of Endochondral Ossification, Journal of Bone and Mineral Research, vol.145, issue.8, pp.1430-1442, 2003.
DOI : 10.2106/00004623-197860050-00007

URL : https://hal.archives-ouvertes.fr/inserm-00176537

G. Semenza, Regulation of Oxygen Homeostasis by Hypoxia-Inducible Factor 1, Physiology, vol.24, issue.2, pp.97-106, 2009.
DOI : 10.1007/s00109-007-0282-2

J. Talma, S. Hopfgarten, C. Murphy, and C. , Hypoxia promotes the differentiated human articular chondrocyte phenotype through sox9-dependent and -independent pathways, J Biol Chem, vol.283, pp.4778-4786, 2008.

J. Akeno, N. Mukherjee, A. Dalal, R. Aronow, B. Koopman et al., Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of sox9, Bone, vol.37, pp.313-322, 2005.

E. Duval, C. Bauge, R. Andriamanalijaona, H. Benateau, S. Leclercq et al., Molecular mechanism of hypoxia-induced chondrogenesis and its application in in??vivo cartilage tissue engineering, Biomaterials, vol.33, issue.26, pp.6042-6051, 2012.
DOI : 10.1016/j.biomaterials.2012.04.061

URL : https://hal.archives-ouvertes.fr/hal-01149536

C. Murphy, HIF-2?? - a mediator of osteoarthritis?, Cell Research, vol.43, issue.9, pp.977-979, 2010.
DOI : 10.1186/ar1765

T. Saito, A. Fukai, A. Mabuchi, T. Ikeda, F. Yano et al., Transcriptional regulation of endochondral ossification by HIF-2?? during skeletal growth and osteoarthritis development, Nature Medicine, vol.4, issue.6, pp.678-686, 2010.
DOI : 10.2106/00004623-197153030-00009

S. Yang, J. Kim, J. Ryu, H. Oh, C. Chun et al., Hypoxia-inducible factor-2?? is a catabolic regulator of osteoarthritic cartilage destruction, Nature Medicine, vol.278, issue.6, pp.687-693, 2011.
DOI : 10.1007/BF02400974

M. Husa, R. Liu-bryan, and R. Terkeltaub, Shifting HIFs in osteoarthritis, Nature Medicine, vol.8, issue.6, pp.641-644, 2011.
DOI : 10.1002/art.27397

Y. Chun, E. Choi, G. Kim, H. Choi, C. Kim et al., Cadmium blocks hypoxia-inducible factor (HIF)-1-mediated response to hypoxia by stimulating the proteasome-dependent degradation of HIF-1??, European Journal of Biochemistry, vol.273, issue.13, pp.4198-4204, 2000.
DOI : 10.1074/jbc.273.48.31924

C. Maes, G. Carmeliet, and E. Schipani, Hypoxia-driven pathways in bone development, regeneration and disease, Nature Reviews Rheumatology, vol.360, issue.6, pp.358-366, 2012.
DOI : 10.1056/NEJMoa0808710

H. Zhang, M. Bosch-marce, L. Shimoda, Y. Tan, J. Baek et al., Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia, Journal of Biological Chemistry, vol.3, issue.16, pp.10892-10903, 2008.
DOI : 10.1128/MCB.02246-06

S. Portron, C. Merceron, O. Gauthier, J. Lesoeur, S. Sourice et al., Effects of In Vitro Low Oxygen Tension Preconditioning of Adipose Stromal Cells on Their In Vivo Chondrogenic Potential: Application in Cartilage Tissue Repair, PLoS ONE, vol.281, issue.4, p.62368, 2013.
DOI : 10.1371/journal.pone.0062368.t002

URL : https://hal.archives-ouvertes.fr/inserm-01847981