S. Dunwoodie, The Role of Hypoxia in Development of the Mammalian Embryo, Developmental Cell, vol.17, issue.6, pp.755-773, 2009.
DOI : 10.1016/j.devcel.2009.11.008

A. Giaccia, M. Simon, and R. Johnson, The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease, Genes & Development, vol.18, issue.18, pp.2183-2194, 2004.
DOI : 10.1101/gad.1243304

C. Maes, G. Carmeliet, and E. Schipani, Hypoxia-driven pathways in bone development, regeneration and disease, Nature Reviews Rheumatology, vol.360, issue.6, pp.358-366, 2012.
DOI : 10.1056/NEJMoa0808710

N. Masson and P. Ratcliffe, Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways, Cancer & Metabolism, vol.2, issue.1, p.3, 2014.
DOI : 10.1038/nature06734

G. Semenza, Hypoxia-Inducible Factors in Physiology and Medicine, Cell, vol.148, issue.3, pp.399-408, 2012.
DOI : 10.1016/j.cell.2012.01.021

URL : https://doi.org/10.1016/j.cell.2012.01.021

M. Koshiji, Y. Kageyama, E. Pete, I. Horikawa, J. Barrett et al., HIF-1?? induces cell cycle arrest by functionally counteracting Myc, The EMBO Journal, vol.23, issue.9, pp.1949-1956, 2004.
DOI : 10.1038/sj.emboj.7600196

URL : http://emboj.embopress.org/content/23/9/1949.full.pdf

G. Karsenty, The complexities of skeletal biology, Nature, vol.3, issue.6937, pp.316-318, 2003.
DOI : 10.1007/s007760050064

H. Kronenberg, Developmental regulation of the growth plate, Nature, vol.153, issue.6937, pp.332-336, 2003.
DOI : 10.1083/jcb.153.1.87

S. Provot and E. Schipani, Molecular mechanisms of endochondral bone development, Biochemical and Biophysical Research Communications, vol.328, issue.3, pp.658-665, 2005.
DOI : 10.1016/j.bbrc.2004.11.068

E. Zelzer and B. Olsen, The genetic basis for skeletal diseases, Nature, vol.116, issue.6937, pp.343-348, 2003.
DOI : 10.1002/ajmg.a.10807

L. Yang, K. Tsang, H. Tang, D. Chan, and K. Cheah, Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation, Proceedings of the National Academy of Sciences, vol.29, issue.8, pp.12097-12102, 2014.
DOI : 10.1002/jbmr.2148

URL : http://www.pnas.org/content/111/33/12097.full.pdf

T. Vu, J. Shipley, G. Bergers, J. Berger, J. Helms et al., MMP-9/Gelatinase B Is a Key Regulator of Growth Plate Angiogenesis and Apoptosis of Hypertrophic Chondrocytes, Cell, vol.93, issue.3, pp.411-422, 1998.
DOI : 10.1016/S0092-8674(00)81169-1

H. Gerber, T. Vu, A. Ryan, J. Kowalski, Z. Werb et al., VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation, Nature Medicine, vol.90, issue.6, pp.623-628, 1999.
DOI : 10.1073/pnas.90.16.7533

R. Amarilio, S. Viukov, A. Sharir, I. Eshkar-oren, R. Johnson et al., HIF1?? regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis, Development, vol.134, issue.21, pp.3917-3928, 2007.
DOI : 10.1242/dev.008441

E. Aro, R. Khatri, R. Gerard-o-'riley, L. Mangiavini, J. Myllyharju et al., Hypoxia-inducible Factor-1 (HIF-1) but Not HIF-2 Is Essential for Hypoxic Induction of Collagen Prolyl 4-Hydroxylases in Primary Newborn Mouse Epiphyseal Growth Plate Chondrocytes, Journal of Biological Chemistry, vol.1, issue.44, pp.37134-37144, 2012.
DOI : 10.1002/(SICI)1097-0029(19981015)43:2<111::AID-JEMT4>3.0.CO;2-O

L. Bentovim, R. Amarilio, and E. Zelzer, HIF1?? is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development, Development, vol.139, issue.23, pp.4473-4483, 2012.
DOI : 10.1242/dev.083881

L. Mangiavini, C. Merceron, E. Araldi, R. Khatri, R. Gerard-o-'riley et al., Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development, Developmental Biology, vol.393, issue.1, pp.124-136, 2014.
DOI : 10.1016/j.ydbio.2014.06.013

D. Pfander, T. Kobayashi, M. Knight, E. Zelzer, D. Chan et al., Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development, Development, vol.131, issue.10, pp.2497-2508, 2004.
DOI : 10.1242/dev.01138

S. Provot and E. Schipani, Fetal Growth Plate: A Developmental Model of Cellular Adaptation to Hypoxia, Annals of the New York Academy of Sciences, vol.1117, issue.1, pp.26-39, 2007.
DOI : 10.1196/annals.1402.076

E. Schipani, H. Ryan, S. Didrickson, T. Kobayashi, M. Knight et al., Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival, Genes Dev, vol.15, pp.2865-2876, 2001.

A. Adesida, L. Grady, W. Khan, S. Millward-sadler, D. Salter et al., Human meniscus cells express hypoxia inducible factor-1?? and increased SOX9 in response to low oxygen tension in cell aggregate culture, Arthritis Research & Therapy, vol.9, issue.4, p.69, 2007.
DOI : 10.1186/ar2267

M. Kanichai, D. Ferguson, P. Prendergast, and V. Campbell, Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: A role for AKT and hypoxia???inducible factor (HIF)???1??, Journal of Cellular Physiology, vol.312, issue.3, pp.708-715, 2008.
DOI : 10.1002/jcp.21446

C. Merceron, C. Vinatier, S. Portron, M. Masson, J. Amiaud et al., Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells, American Journal of Physiology-Cell Physiology, vol.449, issue.2, pp.355-364, 2010.
DOI : 10.1089/107632701300062859

L. Vissers, V. Fano, D. Martinelli, B. Campos-xavier, D. Barbuti et al., Whole-exome sequencing detects somatic mutations of IDH1 in metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA), American Journal of Medical Genetics Part A, vol.324, issue.21, pp.2609-2616, 2011.
DOI : 10.1126/science.1170944

T. Saito, A. Fukai, A. Mabuchi, T. Ikeda, F. Yano et al., Transcriptional regulation of endochondral ossification by HIF-2?? during skeletal growth and osteoarthritis development, Nature Medicine, vol.4, issue.6, pp.678-686, 2010.
DOI : 10.2106/00004623-197153030-00009

M. Simon and B. Keith, The role of oxygen availability in embryonic development and stem cell function, Nature Reviews Molecular Cell Biology, vol.274, issue.4, pp.285-296, 2008.
DOI : 10.1172/JCI17669

C. Koch, [1] Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5, Methods Enzymol, vol.352, pp.3-31, 2002.
DOI : 10.1016/S0076-6879(02)52003-6

S. Kizaka-kondoh and H. Konse-nagasawa, Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia, Cancer Science, vol.78, issue.Suppl 2, pp.1366-1373, 2009.
DOI : 10.1016/j.ijrobp.2007.04.081

S. Provot, D. Zinyk, Y. Gunes, R. Kathri, Q. Le et al., Hif-1?? regulates differentiation of limb bud mesenchyme and joint development, The Journal of Cell Biology, vol.14, issue.3, pp.451-464, 2007.
DOI : 10.1016/S0960-9822(98)70255-6

C. Maes, E. Araldi, K. Haigh, R. Khatri, R. Van-looveren et al., VEGF-independent cell-autonomous functions of HIF-1?? regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival, Journal of Bone and Mineral Research, vol.11, issue.3, pp.596-609, 2012.
DOI : 10.1016/j.ccr.2007.04.001

E. Araldi, R. Khatri, A. Giaccia, M. Simon, and E. Schipani, Lack of HIF-2?? in limb bud mesenchyme causes a modest and transient delay of endochondral bone development, Nature Medicine, vol.177, issue.1, pp.25-26, 2011.
DOI : 10.1083/jcb.200612023

D. Lee, C. Adams, T. Albert, I. Shapiro, S. Evans et al., In situ oxygen utilization in the rat intervertebral disc, Journal of Anatomy, vol.129, issue.3, pp.294-303, 2007.
DOI : 10.1097/00003086-197711000-00012

C. Merceron, L. Mangiavini, A. Robling, T. Wilson, A. Giaccia et al., Loss of HIF-1?? in the Notochord Results in Cell Death and Complete Disappearance of the Nucleus Pulposus, PLoS ONE, vol.5, issue.10, p.110768, 2014.
DOI : 10.1371/journal.pone.0110768.s004

M. Horsman, L. Mortensen, J. Petersen, M. Busk, and J. Overgaard, Imaging hypoxia to improve radiotherapy outcome, Nature Reviews Clinical Oncology, vol.42, issue.12, pp.674-687, 2012.
DOI : 10.1007/s00259-007-0522-2

J. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu et al., Direct measurement of local oxygen concentration in the bone marrow of live animals, Nature, vol.83, issue.7495, pp.269-273, 2014.
DOI : 10.1021/ac2022234

J. Myllyharju and E. Schipani, Extracellular matrix genes as hypoxia-inducible targets, Cell and Tissue Research, vol.172, issue.1, pp.19-29, 2010.
DOI : 10.1128/MCB.12.12.5447

URL : http://europepmc.org/articles/pmc3074490?pdf=render

E. Schipani, Posttranslational modifications of collagens as targets of hypoxia and Hif-1?? in endochondral bone development, Annals of the New York Academy of Sciences, vol.75, issue.1, pp.317-321, 2010.
DOI : 10.4161/cc.7.9.5804

E. Aro, A. Salo, R. Khatri, M. Finnilä, I. Miinalainen et al., Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I, Journal of Biological Chemistry, vol.15, issue.27, pp.16964-16978, 2015.
DOI : 10.1007/978-94-017-9153-3_10

E. Zelzer, R. Mamluk, N. Ferrara, R. Johnson, E. Schipani et al., VEGFA is necessary for chondrocyte survival during bone development, Development, vol.131, issue.9, pp.2161-2171, 2004.
DOI : 10.1242/dev.01053

URL : http://dev.biologists.org/content/develop/131/9/2161.full.pdf

E. Harvey, THE OXYGEN CONSUMPTION OF LUMINOUS BACTERIA, The Journal of General Physiology, vol.11, issue.5, pp.469-475, 1928.
DOI : 10.1085/jgp.11.5.469

URL : http://jgp.rupress.org/content/jgp/11/5/469.full.pdf

J. Kim, I. Tchernyshyov, G. Semenza, and C. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia, Cell Metabolism, vol.3, issue.3, pp.177-185, 2006.
DOI : 10.1016/j.cmet.2006.02.002

I. Papandreou, R. Cairns, L. Fontana, A. Lim, and N. Denko, HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metabolism, vol.3, issue.3, pp.187-197, 2006.
DOI : 10.1016/j.cmet.2006.01.012

H. Zhang, M. Bosch-marce, L. Shimoda, Y. Tan, J. Baek et al., Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia, Journal of Biological Chemistry, vol.3, issue.16, pp.10892-10903, 2008.
DOI : 10.1128/MCB.02246-06

S. Chan, Y. Zhang, C. Hemann, C. Mahoney, J. Zweier et al., MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2, Cell Metabolism, vol.10, issue.4, pp.273-284, 2009.
DOI : 10.1016/j.cmet.2009.08.015

Y. Liu, Z. Ma, C. Zhao, Y. Wang, G. Wu et al., HIF-1?? and HIF-2?? are critically involved in hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1??-mediated fatty acid ??-oxidation, Toxicology Letters, vol.226, issue.2, pp.117-123, 2014.
DOI : 10.1016/j.toxlet.2014.01.033

N. Chandel, D. Mcclintock, C. Feliciano, T. Wood, J. Melendez et al., Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1?? during Hypoxia, Journal of Biological Chemistry, vol.1436, issue.33, pp.25130-25138, 2000.
DOI : 10.1016/S0076-6879(86)26017-6

D. Tello, E. Balsa, B. Acosta-iborra, E. Fuertes-yebra, A. Elorza et al., Induction of the Mitochondrial NDUFA4L2 Protein by HIF-1?? Decreases Oxygen Consumption by Inhibiting Complex I Activity, Cell Metabolism, vol.14, issue.6, pp.768-779, 2011.
DOI : 10.1016/j.cmet.2011.10.008

R. Fukuda, H. Zhang, J. Kim, L. Shimoda, C. Dang et al., HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells, Cell, vol.129, issue.1, pp.111-122, 2007.
DOI : 10.1016/j.cell.2007.01.047

D. Pfander, T. Cramer, E. Schipani, and R. Johnson, HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes, Journal of Cell Science, vol.116, issue.9, pp.1819-1826, 2003.
DOI : 10.1242/jcs.00385

URL : http://jcs.biologists.org/content/joces/116/9/1819.full.pdf

D. Higgins, M. Biju, Y. Akai, A. Wutz, R. Johnson et al., is directly mediated by Hif-1, American Journal of Physiology-Renal Physiology, vol.287, issue.6, pp.1223-1232, 2004.
DOI : 10.1152/ajpcell.00294.2002

URL : http://ajprenal.physiology.org/content/ajprenal/287/6/F1223.full.pdf

Y. Chen, Y. Li, C. Li, L. Chen, Y. Jiang et al., Studying the growth of cervical carcinoma nests and angiogenesis by immunostaining, quantitation and three-dimensional structural analysis, Anal Quant Cytol Histol, vol.22, pp.80-84, 2000.

J. Erler, K. Bennewith, M. Nicolau, N. Dornhofer, C. Kong et al., Lysyl oxidase is essential for hypoxia-induced metastasis, Nature, vol.430, issue.7088, pp.1222-1226, 2006.
DOI : 10.1016/S0014-2999(01)01354-1

J. Lafont, S. Talma, C. Hopfgarten, and C. Murphy, Hypoxia Promotes the Differentiated Human Articular Chondrocyte Phenotype through SOX9-dependent and -independent Pathways, Journal of Biological Chemistry, vol.17, issue.8, pp.4778-4786, 2008.
DOI : 10.1016/j.devcel.2007.02.004

J. Robins, N. Akeno, A. Mukherjee, R. Dalal, B. Aronow et al., Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9, Bone, vol.37, issue.3, pp.313-322, 2005.
DOI : 10.1016/j.bone.2005.04.040

H. Akiyama and V. Lefebvre, Unraveling the transcriptional regulatory machinery in chondrogenesis, Journal of Bone and Mineral Metabolism, vol.404, issue.4, pp.390-395, 2011.
DOI : 10.1016/j.bbrc.2010.11.100

V. Lefebvre, W. Huang, V. Harley, P. Goodfellow, and B. De-crombrugghe, SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene., Molecular and Cellular Biology, vol.17, issue.4, pp.2336-2346, 1997.
DOI : 10.1128/MCB.17.4.2336

W. Bi, J. Deng, Z. Zhang, R. Behringer, and B. De-crombrugghe, Sox9 is required for cartilage formation, Nature Genetics, vol.1130, issue.1, pp.85-89, 1999.
DOI : 10.1016/0167-4781(92)90465-C

N. Shyh-chang, G. Daley, and L. Cantley, Stem cell metabolism in tissue development and aging, Development, vol.140, issue.12, pp.2535-2547, 2013.
DOI : 10.1242/dev.091777

C. Folmes, P. Dzeja, T. Nelson, and A. Terzic, Metabolic Plasticity in Stem Cell Homeostasis and Differentiation, Cell Stem Cell, vol.11, issue.5, pp.596-606, 2012.
DOI : 10.1016/j.stem.2012.10.002

URL : https://doi.org/10.1016/j.stem.2012.10.002

T. Teslaa and M. Teitell, Pluripotent stem cell energy metabolism: an update, The EMBO Journal, vol.34, issue.2, pp.138-153, 2015.
DOI : 10.15252/embj.201490446

URL : http://emboj.embopress.org/content/embojnl/34/2/138.full.pdf

, HIF-1a and growth plate development E Schipani et al BoneKEy Reports, 2015.