Distinguishing predictive profiles for patient-based risk assessment and diagnostics of plaque induced, surgically and prosthetically triggered peri-implantitis

Abstract : Objective: To investigate whether specific predictive profiles for patient-based risk assessment/ diagnostics can be applied in different subtypes of peri-implantitis. Materials and methods: This study included patients with at least two implants (one or more presenting signs of peri-implantitis). Anamnestic, clinical, and implant-related parameters were collected and scored into a single database. Dental implant was chosen as the unit of analysis, and a complete screening protocol was established. The implants affected by peri-implantitis were then clustered into three subtypes in relation to the identified triggering factor: purely plaque-induced or prosthetically or surgically triggered peri-implantitis. Statistical analyses were performed to compare the characteristics and risk factors between peri-implantitis and healthy implants, as well as to compare clinical parameters and distribution of risk factors between plaque, prosthetically and surgically triggered peri-implantitis. The predictive profiles for subtypes of peri-implantitis were estimated using data mining tools including regression methods and C4.5 decision trees. Results: A total of 926 patients previously treated with 2812 dental implants were screened for eligibility. Fifty-six patients (6.04%) with 332 implants (4.44%) met the study criteria. Data from 125 peri-implantitis and 207 healthy implants were therefore analyzed and included in the statistical analysis. Within peri-implantitis group, 51 were classified as surgically triggered (40.8%), 38 as prosthetically triggered (30.4%), and 36 as plaque-induced (28.8%) peri-implantitis. For peri-implantitis, 51 were associated with surgical risk factor (40.8%), 38 with prosthetic risk factor (30.4%), 36 with purely plaque-induced risk factor (28.8%). The variables identified as predictors of peri-implantitis were female sex (OR = 1.60), malpositioning (OR = 48.2), overloading (OR = 18.70), and bone reconstruction (OR = 2.35). The predictive model showed 82.35% of accuracy and identified distinguishing predictive profiles for plaque, prosthetically and surgically triggered peri-implantitis. The model was in accordance with the results of risk analysis being the external validation for model accuracy. Conclusions: It can be concluded that plaque induced and prosthetically and surgically triggered peri-implantitis are different entities associated with distinguishing predictive profiles; hence, the appropriate causal treatment approach remains necessary. The advanced data mining model developed in this study seems to be a promising tool for diagnostics of peri-implantitis subtypes.
Complete list of metadatas

Cited literature [39 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-01845765
Contributor : Valérie Pecqueret <>
Submitted on : Friday, July 20, 2018 - 3:49:45 PM
Last modification on : Friday, August 31, 2018 - 1:59:40 PM
Long-term archiving on : Sunday, October 21, 2018 - 9:01:48 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : jamais

Please log in to resquest access to the document

Identifiers

Collections

Citation

Luigi Canullo, Marco Tallarico, Sandro Radovanovic, Boris Delibasic, Ugo Covani, et al.. Distinguishing predictive profiles for patient-based risk assessment and diagnostics of plaque induced, surgically and prosthetically triggered peri-implantitis. Clinical Oral Implants Research, Wiley, 2016, 27 (10), pp.1243 - 1250. ⟨10.1111/clr.12738⟩. ⟨inserm-01845765⟩

Share

Metrics

Record views

1062