J. R. Arron and Y. Choi, Bone versus immune system, Nature, vol.408, issue.6812, pp.535-536, 2000.
DOI : 10.1038/35046196

W. J. Boyle, Osteoclast differentiation and activation, Nature, vol.20, issue.Suppl., pp.337-342, 2003.
DOI : 10.1007/s007740200049

URL : http://www.nature.com/nature/journal/v423/n6937/pdf/nature01658.pdf

R. Baron and M. Kneissel, WNT signaling in bone homeostasis and disease: from human mutations to treatments, Nature Medicine, vol.28, issue.2, pp.179-192, 2013.
DOI : 10.1016/j.bone.2009.02.012

Q. Jin, RANKL Inhibition Through Osteoprotegerin Blocks Bone Loss in Experimental Periodontitis, Journal of Periodontology, vol.20, issue.7, pp.1300-1308, 2007.
DOI : 10.1359/jbmr.2003.18.3.512

URL : http://europepmc.org/articles/pmc2583091?pdf=render

C. Giannopoulou, Immunohistochemical expression of RANKL, RANK and OPG in gingival tissue of patients with periodontitis, Acta Odontologica Scandinavica, vol.45, issue.6, pp.629-634, 2012.
DOI : 10.1111/j.1600-0757.2007.00215.x

A. R. Pettit, RANKL protein is expressed at the pannus???bone interface at sites of articular bone erosion in rheumatoid arthritis, Rheumatology, vol.63, issue.9, pp.1068-1076, 2006.
DOI : 10.1136/ard.2003.018481

F. P. Ross, Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin aVb3 potentiate bone resorption, J. Biol. Chem, vol.268, pp.9901-9907, 1993.

V. Praloran, Macrophage colony-stimulating factor is produced by activated T lymphocytes in vitro and is detected in vivo in T cells from reactive lymph nodes, Blood, vol.79, pp.2500-2501, 1992.

T. Kawai, B and T Lymphocytes Are the Primary Sources of RANKL in the Bone Resorptive Lesion of Periodontal Disease, The American Journal of Pathology, vol.169, issue.3, pp.987-998, 2006.
DOI : 10.2353/ajpath.2006.060180

H. R. Kim, Reciprocal Activation of CD4+ T Cells and Synovial Fibroblasts by Stromal Cell-Derived Factor 1 Promotes RANKL Expression and Osteoclastogenesis in Rheumatoid Arthritis, Arthritis & Rheumatology, vol.65, issue.3, pp.538-548, 2014.
DOI : 10.1158/0008-5472.CAN-04-1687

L. Danks, RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation, Annals of the Rheumatic Diseases, vol.12, issue.6, 2015.
DOI : 10.1038/nm1518

H. Yasuda, Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL, Proceedings of the National Academy of Sciences, vol.3, issue.11, pp.3597-3602, 1998.
DOI : 10.1038/nm1197-1285

H. Yoshida, The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene, Nature, vol.345, issue.6274, pp.442-444, 1990.
DOI : 10.1038/345442a0

Y. Kong, OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis, Nature, vol.128, issue.6717, pp.315-323, 1999.
DOI : 10.1210/endo-128-4-1792

W. C. Dougall, RANK is essential for osteoclast and lymph node development, Genes & Development, vol.13, issue.18, pp.2412-2424, 1999.
DOI : 10.1101/gad.13.18.2412

M. Stolina, RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFalpha or anti-IL-1 therapies Improvements in bone density and structure during anti-TNF-alpha therapy in pediatric Crohn's disease, Arthritis Res. Ther. J. Clin. Endocrinol. Metab, vol.11, issue.100, pp.2630-2639, 2009.

E. Jimi, Interleukin 1 Induces Multinucleation and Bone-Resorbing Activity of Osteoclasts in the Absence of Osteoblasts/Stromal Cells, Experimental Cell Research, vol.247, issue.1, pp.84-93, 1999.
DOI : 10.1006/excr.1998.4320

G. D. Roodman, Perspectives: Interleukin-6: An osteotropic factor?, Journal of Bone and Mineral Research, vol.128, issue.1, pp.475-478, 1992.
DOI : 10.1002/jbmr.5650070502

S. Kotake, IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis, Journal of Clinical Investigation, vol.103, issue.9, pp.1345-1352, 1999.
DOI : 10.1172/JCI5703

, 21

J. Li, RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism, Proceedings of the National Academy of Sciences, vol.360, issue.6406, pp.1566-1571, 2000.
DOI : 10.1038/360741a0

T. Akiyama, The Tumor Necrosis Factor Family Receptors RANK and CD40 Cooperatively Establish the Thymic Medullary Microenvironment and Self-Tolerance, Immunity, vol.29, issue.3, pp.423-437, 2008.
DOI : 10.1016/j.immuni.2008.06.015

Y. Kong, Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand, Nature, vol.402, issue.6763supp, pp.304-308, 1999.
DOI : 10.1038/46303

R. M. Steinman and Z. A. Cohn, Identification of a novel cell type in peripheral lymphoid organs of mice, J. Exp. Med, vol.173, pp.1142-1162, 1973.

J. Helft, Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice, Immunological Reviews, vol.319, issue.1, pp.55-75, 2010.
DOI : 10.4049/jimmunol.179.7.4535

M. Guilliams, Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nature Reviews Immunology, vol.114, issue.8, pp.571-578, 2014.
DOI : 10.1161/CIRCRESAHA.114.303204

R. M. Steinman and M. C. Nussenzweig, Dendritic Cells: Features and Functions, Immunological Reviews, vol.48, issue.1, pp.127-147, 1980.
DOI : 10.1084/jem.132.4.813

B. Reizis, Plasmacytoid Dendritic Cells: Recent Progress and Open Questions, Annual Review of Immunology, vol.29, issue.1, pp.163-183, 2011.
DOI : 10.1146/annurev-immunol-031210-101345

M. Gilliet, Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases, Nature Reviews Immunology, vol.204, issue.8, pp.594-606, 2008.
DOI : 10.4049/jimmunol.171.6.3296

E. Segura and S. Amigorena, Inflammatory dendritic cells in mice and humans, Trends in Immunology, vol.34, issue.9, pp.440-445, 2013.
DOI : 10.1016/j.it.2013.06.001

URL : https://hal.archives-ouvertes.fr/inserm-00846095

, Immunity, vol.40, pp.642-656

E. Segura and J. A. Villadangos, Antigen presentation by dendritic cells in vivo, Current Opinion in Immunology, vol.21, issue.1, pp.105-110, 2009.
DOI : 10.1016/j.coi.2009.03.011

O. P. Joffre, Cross-presentation by dendritic cells, Nature Reviews Immunology, vol.195, issue.8, pp.557-569, 2012.
DOI : 10.1084/jem.20011644

R. Forster, Lymph node homing of T cells and dendritic cells via afferent lymphatics, Trends in Immunology, vol.33, issue.6, pp.271-280, 2012.
DOI : 10.1016/j.it.2012.02.007

J. Banchereau, Immunobiology of Dendritic Cells, Annual Review of Immunology, vol.18, issue.1, pp.767-811, 2000.
DOI : 10.1146/annurev.immunol.18.1.767

H. J. Mckenna, Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells, Blood, vol.95, pp.3489-3497, 2000.

K. Shortman and Y. J. Liu, Mouse and human dendritic cell subtypes, Nature Reviews Immunology, vol.1, issue.3, pp.151-161, 2002.
DOI : 10.1038/79747

M. Haniffa, Ontogeny and Functional Specialization of Dendritic Cells in Human and Mouse, Adv. Immunol, vol.120, pp.1-49, 2013.
DOI : 10.1016/B978-0-12-417028-5.00001-6

M. Collin, Human dendritic cell subsets, Immunology, vol.38, issue.1, pp.22-30, 2013.
DOI : 10.1016/j.immuni.2013.04.011

N. A. Fanger, Human Dendritic Cells Mediate Cellular Apoptosis via Tumor Necrosis Factor???Related Apoptosis-Inducing Ligand (Trail), The Journal of Experimental Medicine, vol.158, issue.8, pp.1155-1164, 1999.
DOI : 10.1126/science.1352913

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.7, issue.6673, pp.245-252, 1998.
DOI : 10.1016/S1074-7613(00)80531-2

E. Ingulli, T Cells, The Journal of Experimental Medicine, vol.71, issue.12, pp.2133-2141, 1997.
DOI : 10.1084/jem.184.4.1413

R. Josien, TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells, J. Immunol, vol.162, pp.2562-2568, 1999.

M. F. Bachmann, TRANCE, a Tumor Necrosis Factor Family Member Critical for CD40 Ligand???independent T Helper Cell Activation, The Journal of Experimental Medicine, vol.272, issue.7, pp.1025-1031, 1999.
DOI : 10.1038/28204

S. Ferry, Osteoprotegerin (OPG) binds with tumor-necrosis factorrelated inducing-apoptosis ligand (TRAIL): suppression of TRAIL induced apoptosis in ameloblastomas, Oral Oncol, vol.42, pp.415-420, 2006.

B. R. Wong, TRANCE (Tumor Necrosis Factor [TNF]-related Activation-induced Cytokine), a New TNF Family Member Predominantly Expressed in T cells, Is a Dendritic Cell???specific Survival Factor, The Journal of Experimental Medicine, vol.372, issue.12, pp.2075-2080, 1997.
DOI : 10.1084/jem.183.1.7

R. Josien, TRANCE, a Tumor Necrosis Factor Family Member, Enhances the Longevity and Adjuvant Properties of Dendritic Cells In Vivo, Journal of Experimental Medicine, vol.191, issue.3, pp.495-501, 2000.
DOI : 10.1084/jem.191.3.495

T. Miyamoto, Bifurcation of osteoclasts and dendritic cells from common progenitors, Blood, vol.98, issue.8, pp.2544-2554, 2001.
DOI : 10.1182/blood.V98.8.2544

C. Servet-delprat, Flt3+ macrophage precursors commit sequentially to osteoclasts, dendritic cells and microglia, BMC Immunology, vol.3, issue.1, p.15, 2002.
DOI : 10.1186/1471-2172-3-15

URL : https://hal.archives-ouvertes.fr/inserm-00123282

A. Rivollier, Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment, Blood, vol.104, issue.13, pp.4029-4037, 2004.
DOI : 10.1182/blood-2004-01-0041

URL : http://www.bloodjournal.org/content/bloodjournal/104/13/4029.full.pdf

M. Alnaeeli, Immune Interactions with CD4+ T Cells Promote the Development of Functional Osteoclasts from Murine CD11c+ Dendritic Cells, The Journal of Immunology, vol.177, issue.5, pp.3314-3326, 2006.
DOI : 10.4049/jimmunol.177.5.3314

A. Wakkach, Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts, Blood, vol.112, issue.13, pp.5074-5083, 2008.
DOI : 10.1182/blood-2008-01-132787

URL : https://hal.archives-ouvertes.fr/hal-00419055

A. Gallois, Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes, Journal of Bone and Mineral Research, vol.52, issue.3, pp.661-672, 2010.
DOI : 10.4049/jimmunol.168.10.5333

URL : https://hal.archives-ouvertes.fr/ensl-00815712

M. Alnaeeli, Dendritic Cells at the Osteo-Immune Interface: Implications for Inflammation-Induced Bone Loss, Journal of Bone and Mineral Research, vol.111, issue.6, pp.775-780, 2007.
DOI : 10.2106/00004623-199607000-00016

URL : http://onlinelibrary.wiley.com/doi/10.1359/jbmr.070314/pdf

C. Speziani, Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines, European Journal of Immunology, vol.157, issue.3, pp.747-757, 2007.
DOI : 10.4049/jimmunol.167.3.1758

URL : http://onlinelibrary.wiley.com/doi/10.1002/eji.200636534/pdf

B. Harkel, The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts, PLOS ONE, vol.287, issue.10, p.139564, 2015.
DOI : 10.1371/journal.pone.0139564.t001

T. Braun and J. Zwerina, Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis, Arthritis Research & Therapy, vol.13, issue.4, p.235, 2011.
DOI : 10.1007/s10067-010-1575-3

URL : https://arthritis-research.biomedcentral.com/track/pdf/10.1186/ar3380?site=arthritis-research.biomedcentral.com

D. R. Haynes, Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint, Rheumatology, vol.40, issue.6, pp.623-630, 2001.
DOI : 10.1084/jem.191.7.1095

T. Ali, Osteoporosis in Inflammatory Bowel Disease, The American Journal of Medicine, vol.122, issue.7, pp.599-604, 2009.
DOI : 10.1016/j.amjmed.2009.01.022

A. E. Oostlander, T cell-mediated increased osteoclast formation from peripheral blood as a mechanism for crohn's disease-associated bone loss, Journal of Cellular Biochemistry, vol.108, issue.(Suppl. 4), pp.260-268, 2012.
DOI : 10.1002/jcb.22326

T. Ciucci, Bone marrow Th17 TNF?? cells induce osteoclast differentiation, and link bone destruction to IBD, Gut, vol.37, issue.7, pp.1072-1081, 2015.
DOI : 10.1016/j.immuni.2012.08.025

S. Ray, Central role of IL-17/Th17 immune responses and the gut microbiota in the pathogenesis of intestinal fibrosis, Current Opinion in Gastroenterology, vol.30, issue.6, pp.531-538, 2014.
DOI : 10.1097/MOG.0000000000000119

J. Leipe, Role of Th17 cells in human autoimmune arthritis, Arthritis & Rheumatism, vol.60, issue.Suppl, pp.2876-2885, 2010.
DOI : 10.4049/jimmunol.167.10.6015

URL : http://onlinelibrary.wiley.com/doi/10.1002/art.27622/pdf

R. J. Marijnissen, Increased expression of interleukin-22 by synovial Th17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation, Arthritis & Rheumatism, vol.247, issue.10, pp.2939-2948, 2011.
DOI : 10.1006/excr.1998.4320

C. E. Costa, Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis, The Journal of Experimental Medicine, vol.100, issue.5, pp.687-693, 2005.
DOI : 10.1084/jem.20030137

F. Coury, Langerhans cell histiocytosis reveals a new IL-17A???dependent pathway of dendritic cell fusion, Nature Medicine, vol.178, issue.1, pp.81-87, 2008.
DOI : 10.1074/jbc.M703250200

M. Tucci, Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation, British Journal of Haematology, vol.67, issue.1, pp.821-831, 2013.
DOI : 10.1182/blood-2008-01-132787

URL : http://onlinelibrary.wiley.com/doi/10.1111/bjh.12333/pdf

A. Hameed, Bone Disease in Multiple Myeloma: Pathophysiology and Management, Cancer Growth and Metastasis, vol.7, pp.33-42, 2014.
DOI : 10.4137/CGM.S16817

A. Venkataraman and K. Almas, Rheumatoid arthritis and periodontal disease: an update, N. Y. State Dent. J, vol.81, pp.30-36, 2015.

N. Dutzan, Interleukin-21 Expression and Its Association With Proinflammatory Cytokines in Untreated Chronic Periodontitis Patients, Journal of Periodontology, vol.25, issue.7, pp.948-954, 2012.
DOI : 10.1177/154405910508400711

C. R. Cardoso, Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease, Oral Microbiology and Immunology, vol.109, issue.suppl 1, pp.1-6, 2009.
DOI : 10.4049/jimmunol.178.11.6725

T. Nagasawa, Roles of receptor activator of nuclear factor-?B ligand (RANKL) and osteoprotegerin in periodontal health and disease, Periodontology 2000, vol.18, issue.1, pp.65-84, 2000.
DOI : 10.1074/jbc.M212473200

M. A. Eskan, The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss, Nature Immunology, vol.153, issue.5, pp.465-473, 2012.
DOI : 10.1016/j.chom.2011.10.006

URL : http://europepmc.org/articles/pmc3330141?pdf=render

S. A. Hienz, Mechanisms of Bone Resorption in Periodontitis, Journal of Immunology Research, vol.8, issue.2, p.615486, 2015.
DOI : 10.1111/j.2041-1014.2012.00663.x

N. M. 75-moutsopoulos, Porphyromonas gingivalis promotes Th17 inducing pathways in chronic periodontitis, Journal of Autoimmunity, vol.39, issue.4, pp.294-303, 2012.
DOI : 10.1016/j.jaut.2012.03.003

C. L. Long and M. B. Humphrey, Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling. Bonekey Rep, p.59, 2012.