P. Maxwell, M. Wiesener, and G. Chang, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis, Nature, vol.7, issue.6733, pp.271-275, 1999.
DOI : 10.1038/ng0594-85

C. Stebbins, W. Kaelin, . Jr, and N. Pavletich, Structure of the VHL-ElonginC-ElonginB Complex: Implications for VHL Tumor Suppressor Function, Science, vol.284, issue.5413, pp.455-4561, 1999.
DOI : 10.1126/science.284.5413.455

E. Berra, E. Benizri, A. Ginouvès, V. Volmat, D. Roux et al., HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1?? in normoxia, The EMBO Journal, vol.22, issue.16, pp.4082-4090, 2003.
DOI : 10.1093/emboj/cdg392

URL : https://hal.archives-ouvertes.fr/hal-00322761

B. Gardie, M. Percy, and D. Hoogewijs, The role of PHD2 mutations in the pathogenesis of erythrocytosis, Hypoxia, vol.2, pp.71-90, 2014.
DOI : 10.2147/HP.S54455

R. Wenger, D. Stiehl, and G. Camenisch, Integration of Oxygen Signaling at the Consensus HRE, Science Signaling, vol.390, issue.Pt 1, p.12, 2005.
DOI : 10.1042/BJ20042121

URL : http://www.zora.uzh.ch/id/eprint/1285/1/Wenger2005-3MaV.pdf

D. Mole, C. Blancher, and R. Copley, Genome-wide Association of Hypoxia-inducible Factor (HIF)-1?? and HIF-2?? DNA Binding with Expression Profiling of Hypoxia-inducible Transcripts, Journal of Biological Chemistry, vol.63, issue.25, pp.16767-16775, 2009.
DOI : 10.1128/MCB.00440-07

URL : http://www.jbc.org/content/284/25/16767.full.pdf

G. Semenza, Targeting HIF-1 for cancer therapy, Nature Reviews Cancer, vol.3, issue.10, pp.721-753, 2003.
DOI : 10.1038/nrc1187

J. Pouysségur, F. Dayan, and N. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.9, issue.suppl. 5, pp.437-443, 2006.
DOI : 10.1016/j.devcel.2005.09.010

T. Bishop and P. Ratcliffe, Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives, Hypoxia (Auckl), vol.52, pp.197-213, 2014.

C. Loenarz, M. Coleman, and A. Boleininger, The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens, EMBO reports, vol.12, issue.1, pp.63-70, 2011.
DOI : 10.1073/pnas.0810067106

URL : http://embor.embopress.org/content/embor/12/1/63.full.pdf

R. Appelhoff, Y. Tian, and R. Raval, Differential Function of the Prolyl Hydroxylases PHD1, PHD2, and PHD3 in the Regulation of Hypoxia-inducible Factor, Journal of Biological Chemistry, vol.61, issue.37, pp.38458-38465, 2004.
DOI : 10.1002/jcb.20067

R. Chowdhury, I. Leung, and Y. Tian, Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases, Nature Communications, vol.463, issue.48, p.12673, 2016.
DOI : 10.1042/BJ20140779

URL : https://hal.archives-ouvertes.fr/hal-01389827

M. Chan, O. Atasoylu, and E. Hodson, Potent and selective triazolebased inhibitors of the hypoxia-inducible factor prolyl-hydroxylases with activity in the murine brain, PLoS One, vol.10, issue.7, p.132004, 2015.

M. Chan, J. Holt-martyn, C. Schofield, and P. Ratcliffe, Pharmacological targeting of the HIF hydroxylases ??? A new field in medicine development, Molecular Aspects of Medicine, vol.47, issue.48, pp.47-4854, 2016.
DOI : 10.1016/j.mam.2016.01.001

K. Franke, M. Gassmann, and B. Wielockx, Erythrocytosis: the HIF pathway in control, Blood, vol.122, issue.7, pp.1122-1128, 2013.
DOI : 10.1182/blood-2013-01-478065

URL : http://www.bloodjournal.org/content/bloodjournal/122/7/1122.full.pdf

E. Hodson, L. Nicholls, and P. Turner, Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIF-2 pathway, The Journal of Physiology, vol.110, issue.5, pp.1179-1195, 2016.
DOI : 10.1073/pnas.1305961110

C. Rosenberger, S. Mandriota, and J. Jurgensen, Expression of Hypoxia-Inducible Factor-1?? and -2?? in Hypoxic and Ischemic Rat Kidneys, Journal of the American Society of Nephrology, vol.13, issue.7, pp.1721-1732, 2002.
DOI : 10.1097/01.ASN.0000017223.49823.2A

URL : http://jasn.asnjournals.org/content/13/7/1721.full.pdf

T. Zhou, M. Chien, S. Kaleem, and H. Matsunami, Single cell transcriptome analysis of mouse carotid body glomus cells, The Journal of Physiology, vol.3, issue.15, pp.4225-4251, 2016.
DOI : 10.1038/nprot.2008.120

URL : http://onlinelibrary.wiley.com/doi/10.1113/JP271936/pdf

J. Schödel, S. Oikonomopoulos, J. Ragoussis, C. Pugh, P. Ratcliffe et al., High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq, Blood, vol.117, issue.23, pp.207-217, 2012.
DOI : 10.1182/blood-2010-10-314427

J. Schödel, D. Mole, and P. Ratcliffe, Pan-genomic binding of hypoxiainducible transcription factors, Biol Chem, vol.394, issue.4, pp.507-517, 2013.

H. Choudhry, J. Schodel, and S. Oikonomopoulos, Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2, EMBO reports, vol.281, issue.1, pp.70-76, 2014.
DOI : 10.1074/jbc.M511408200

R. Salama, N. Masson, and P. Simpson, Heterogeneous Effects of Direct Hypoxia Pathway Activation in Kidney Cancer, PLOS ONE, vol.32, issue.8, p.134645, 2015.
DOI : 10.1371/journal.pone.0134645.s011

URL : https://doi.org/10.1371/journal.pone.0134645

J. Platt, R. Salama, and J. Smythies, Capture???C reveals preformed chromatin interactions between HIF???binding sites and distant promoters, EMBO reports, vol.17, issue.10, pp.1410-1421, 2016.
DOI : 10.15252/embr.201642198

URL : http://embor.embopress.org/content/embor/17/10/1410.full.pdf

H. Choudhry, A. Harris, and A. Mcintyre, The tumour hypoxia induced non-coding transcriptome, Molecular Aspects of Medicine, vol.47, issue.48, pp.47-4835, 2016.
DOI : 10.1016/j.mam.2016.01.003

H. Choudhry, A. Albukhari, and M. Morotti, Erratum: Tumor hypoxia induces nuclear paraspeckle formation through HIF-2?? dependent transcriptional activation of NEAT1 leading to cancer cell survival, Oncogene, vol.34, issue.34, p.4546, 2015.
DOI : 10.1038/onc.2014.431

URL : http://www.nature.com/onc/journal/v34/n34/pdf/onc2014431a.pdf

C. Voellenkle, J. Garcia-manteiga, and S. Pedrotti, Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing, Scientific Reports, vol.9, issue.1, p.24141, 2016.
DOI : 10.1186/gb-2008-9-9-r137

J. Sena, L. Wang, L. Heasley, and C. Hu, Hypoxia Regulates Alternative Splicing of HIF and non-HIF Target Genes, Molecular Cancer Research, vol.12, issue.9, pp.1233-1243, 2014.
DOI : 10.1158/1541-7786.MCR-14-0149

URL : http://mcr.aacrjournals.org/content/molcanres/12/9/1233.full.pdf

E. Jakubauskiene, L. Vilys, Y. Makino, L. Poellinger, and A. Kanopka, Increased Serine-Arginine (SR) Protein Phosphorylation Changes Pre-mRNA Splicing in Hypoxia, Journal of Biological Chemistry, vol.7, issue.29, pp.18079-18089, 2015.
DOI : 10.1016/j.molcel.2005.02.020

URL : http://www.jbc.org/content/290/29/18079.full.pdf

D. Memon, K. Dawson, C. Smowton, W. Xing, C. Dive et al., Hypoxia-driven splicing into noncoding isoforms regulates the DNA damage response, npj Genomic Medicine, vol.26, issue.1, p.16020, 2016.
DOI : 10.1093/bioinformatics/btq064

URL : https://www.nature.com/articles/npjgenmed201620.pdf

Y. Yao, J. Shang, W. Song, Q. Deng, H. Liu et al., Global profiling of the gene expression and alternative splicing events during hypoxia-regulated chondrogenic differentiation in human cartilage endplate-derived stem cells, Genomics, vol.107, issue.5, pp.170-177, 2016.
DOI : 10.1016/j.ygeno.2016.03.003

D. Sharon, H. Tilgner, F. Grubert, and M. Snyder, A single-molecule long-read survey of the human transcriptome, Nature Biotechnology, vol.3, issue.11, pp.1009-1014, 2013.
DOI : 10.1038/nature07672

URL : http://europepmc.org/articles/pmc4075632?pdf=render

, Hypoxia 2017:5 submit your manuscript | www, dovepress.com Dovepress Dovepress

, Hypoxia Nantes, 2016.

S. Oikonomopoulos, Y. Wang, H. Djambazian, D. Badescu, and J. Ragoussis, Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations, Scientific Reports, vol.9, issue.1, p.31602, 2016.
DOI : 10.1101/003566

L. Rahtu-korpela, S. Karsikas, and S. Hörkkö, HIF Prolyl 4-Hydroxylase-2 Inhibition Improves Glucose and Lipid Metabolism and Protects Against Obesity and Metabolic Dysfunction, Diabetes, vol.63, issue.10, pp.3324-3333, 2014.
DOI : 10.2337/db14-0472

URL : http://hw-f5-diabetes.highwire.org/content/diabetes/63/10/3324.full.pdf

L. Rahtu-korpela, J. Määttä, and E. Dimova, Hypoxia-Inducible Factor Prolyl 4-Hydroxylase-2 Inhibition Protects Against Development of AtherosclerosisSignificance, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.36, issue.4, pp.608-617, 2016.
DOI : 10.1161/ATVBAHA.115.307136

H. Matsuura, T. Ichiki, and E. Inoue, Prolyl Hydroxylase Domain Protein 2 Plays a Critical Role in Diet-Induced Obesity and Glucose Intolerance, Circulation, vol.127, issue.21, pp.2078-2087, 2013.
DOI : 10.1161/CIRCULATIONAHA.113.001742

Z. Michailidou, N. Morton, M. Navarrete, and J. , Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion, Diabetes, vol.64, issue.3, pp.733-745, 2015.
DOI : 10.2337/db14-0233

URL : http://diabetes.diabetesjournals.org/content/64/3/733.full.pdf

G. Bakris, K. Yu, and R. Leong, Effects of a novel anemia treatment, FG-4592 ?an oral hypoxia-inducible prolyl hydroxylase inhibitor (HIF- PHI) on blood pressure and cholesterol in patients with chronic kidney disease, J Clin Hypertension, vol.14, pp.487-489, 2013.

E. Olson, L. Demopoulos, and T. Haws, Short-term treatment with a novel HIF-prolyl hydroxylase inhibitor (GSK1278863) failed to improve measures of performance in subjects with claudication-limited peripheral artery disease, Vascular Medicine, vol.124, issue.2, pp.473-482, 2014.
DOI : 10.1161/CIRCULATIONAHA.109.881888

E. Marsch, J. Demandt, and T. Theelen, Deficiency of the oxygen sensor prolyl hydroxylase 1 attenuates hypercholesterolaemia, atherosclerosis, and hyperglycaemia, European Heart Journal, vol.63, issue.39, pp.2993-2997, 2016.
DOI : 10.1074/jbc.M109.014860

J. Myllyharju and E. Schipani, Extracellular matrix genes as hypoxia-inducible targets, Cell and Tissue Research, vol.172, issue.1, pp.19-29, 2010.
DOI : 10.1128/MCB.12.12.5447

URL : http://europepmc.org/articles/pmc3074490?pdf=render

J. Myllyharju, Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets, Annals of Medicine, vol.102, issue.5, pp.402-417, 2008.
DOI : 10.1096/fj.06-5887fje

J. Mäki, Lysyl oxidases in mammalian development and certain pathological conditions, Histol Histopathol, vol.24, issue.5, pp.651-660, 2009.

T. Cox, A. Gartland, and J. Erler, Lysyl Oxidase, a Targetable Secreted Molecule Involved in Cancer Metastasis, Cancer Research, vol.76, issue.2, pp.188-192, 2016.
DOI : 10.1158/0008-5472.CAN-15-2306

G. Semenza, The hypoxic tumor microenvironment: A driving force for breast cancer progression, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1863, issue.3, pp.382-391, 2016.
DOI : 10.1016/j.bbamcr.2015.05.036

E. Aro, R. Khatri, R. Gerard-o-'riley, L. Mangiavini, J. Myllyharju et al., Hypoxia-inducible Factor-1 (HIF-1) but Not HIF-2 Is Essential for Hypoxic Induction of Collagen Prolyl 4-Hydroxylases in Primary Newborn Mouse Epiphyseal Growth Plate Chondrocytes, Journal of Biological Chemistry, vol.1, issue.44, pp.37134-37144, 2012.
DOI : 10.1002/(SICI)1097-0029(19981015)43:2<111::AID-JEMT4>3.0.CO;2-O

T. Holster, O. Pakkanen, and R. Soininen, Loss of Assembly of the Main Basement Membrane Collagen, Type IV, but Not Fibril-forming Collagens and Embryonic Death in Collagen Prolyl 4-Hydroxylase I Null Mice, Journal of Biological Chemistry, vol.129, issue.4, pp.2512-2519, 2007.
DOI : 10.1073/pnas.94.5.1852

E. Aro, A. Salo, and R. Khatri, Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I, Journal of Biological Chemistry, vol.15, issue.27, pp.16964-16978, 2015.
DOI : 10.1007/978-94-017-9153-3_10

J. Mäki, J. Räsänen, and H. Tikkanen, Inactivation of the Lysyl Oxidase Gene Lox Leads to Aortic Aneurysms, Cardiovascular Dysfunction, and Perinatal Death in Mice, Circulation, vol.106, issue.19, pp.2503-2509, 2002.
DOI : 10.1161/01.CIR.0000038109.84500.1E

J. Mäki, R. Sormunen, and S. Lippo, Lysyl Oxidase Is Essential for Normal Development and Function of the Respiratory System and for the Integrity of Elastic and Collagen Fibers in Various Tissues, The American Journal of Pathology, vol.167, issue.4, pp.927-936, 2005.
DOI : 10.1016/S0002-9440(10)61183-2

L. Kutchuk, A. Laitala, and S. Soueid-bomgarten, Muscle composition is regulated by a Lox-TGF?? feedback loop, Development, vol.142, issue.5, pp.983-993, 2015.
DOI : 10.1242/dev.113449

H. Gelderblom, P. Hogendoorn, and S. Dijkstra, The Clinical Approach Towards Chondrosarcoma, The Oncologist, vol.13, issue.3, pp.320-329, 2008.
DOI : 10.1634/theoncologist.2007-0237

URL : http://theoncologist.alphamedpress.org/content/13/5/618.full.pdf

F. Speetjens, Y. De-jong, H. Gelderblom, and J. Bovee, Molecular oncogenesis of chondrosarcoma, Current Opinion in Oncology, vol.28, issue.4, pp.314-322, 2016.
DOI : 10.1097/CCO.0000000000000300

J. Van-oosterwijk, B. Herpers, and D. Meijer, Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance, Annals of Oncology, vol.1, issue.3, pp.1617-1626, 2011.
DOI : 10.2174/1874467210801030244

J. Bovee, P. Hogendoorn, J. Wunder, and B. Alman, Cartilage tumours and bone development: molecular pathology and possible therapeutic targets, Nature Reviews Cancer, vol.9, issue.7, pp.481-488, 2010.
DOI : 10.1186/1476-4598-9-17

J. Gibson, P. Milner, R. White, T. Fairfax, and R. Wilkins, Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis, Pfl??gers Archiv - European Journal of Physiology, vol.50, issue.Pt 3, pp.563-573, 2008.
DOI : 10.1113/expphysiol.1992.sp003615

T. Kubo, T. Sugita, S. Shimose, T. Matsuo, K. Arihiro et al., Expression of hypoxia-inducible factor-1alpha and its relationship to tumour angiogenesis and cell proliferation in cartilage tumours, J Bone Joint Surg Br, vol.90, pp.364-370, 2008.

S. Boeuf, J. Bovee, B. Lehner, P. Hogendoorn, and W. Richter, Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours, Histopathology, vol.104, issue.5, pp.641-651, 2010.
DOI : 10.1016/j.bbapap.2007.09.008

L. Dang, D. White, and S. Gross, Erratum: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, issue.7300, p.966, 2010.
DOI : 10.1038/nature09132

URL : http://www.nature.com/nature/journal/v465/n7300/pdf/nature09132.pdf

S. Zhao, Y. Lin, and W. Xu, Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1??, Science, vol.12, issue.19-20, pp.261-265, 2009.
DOI : 10.1016/j.drudis.2007.08.006

URL : http://europepmc.org/articles/pmc3251015?pdf=render

R. Chowdhury, K. Yeoh, and Y. Tian, The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases, EMBO reports, vol.1815, issue.5, pp.463-469, 2011.
DOI : 10.1126/science.1170944

URL : http://embor.embopress.org/content/embor/12/5/463.full.pdf

P. Koivunen, S. Lee, and C. Duncan, Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation, Nature, vol.37, issue.7390, pp.484-488, 2012.
DOI : 10.1093/nar/gkp425

URL : http://europepmc.org/articles/pmc3656605?pdf=render

W. Xu, H. Yang, and Y. Liu, Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of ??-Ketoglutarate-Dependent Dioxygenases, Cancer Cell, vol.19, issue.1, pp.17-30, 2011.
DOI : 10.1016/j.ccr.2010.12.014

URL : https://doi.org/10.1016/j.ccr.2010.12.014

T. Pansuriya, E. Van, and P. Adamo, Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome, Nature Genetics, vol.3, issue.12, pp.1256-1261, 2011.
DOI : 10.1158/1078-0432.CCR-10-2047

URL : http://europepmc.org/articles/pmc3427908?pdf=render

I. Batinic-haberle, A. Tovmasyan, and E. Roberts, SOD Therapeutics: Latest Insights into Their Structure-Activity Relationships and Impact on the Cellular Redox-Based Signaling Pathways, Antioxidants & Redox Signaling, vol.20, issue.15, pp.2372-2415, 2014.
DOI : 10.1089/ars.2012.5147

URL : http://europepmc.org/articles/pmc4005498?pdf=render

I. Batinic-haberle, A. Tovmasyan, and I. Spasojevic, An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins ??? From superoxide dismutation to H 2 O 2 -driven pathways, Redox Biology, vol.5, issue.0, pp.43-65, 2015.
DOI : 10.1016/j.redox.2015.01.017

I. Batini?-haberle, A. Tovmasyan, and I. Spasojevi?, Mn Porphyrin-Based Redox-Active Therapeutics, Redox-Active Therapeutics, pp.165-212, 2016.
DOI : 10.1177/1091581816642766

K. Oliver, J. Garvey, and C. Ng, Hypoxia Activates NF-??B???Dependent Gene Expression Through the Canonical Signaling Pathway, Antioxidants & Redox Signaling, vol.11, issue.9, pp.2057-2564, 2009.
DOI : 10.1089/ars.2008.2400

J. Zhou, T. Schmid, and B. Brune, Tumor Necrosis Factor-?? Causes Accumulation of a Ubiquitinated Form of Hypoxia Inducible Factor-1?? through a Nuclear Factor-??B-Dependent Pathway, Molecular Biology of the Cell, vol.14, issue.6, pp.2216-2225, 2003.
DOI : 10.1093/ndt/17.suppl_1.3

M. Jaramillo, M. Briehl, J. Crapo, I. Batinic-haberle, and M. Tome, Manganese Porphyrin, MnTE-2-PyP5+, Acts as a Pro-Oxidant to Potentiate Glucocorticoid-Induced Apoptosis in Lymphoma Cells, Free Radical Biology and Medicine, vol.52, issue.8, pp.1272-1284, 2012.
DOI : 10.1016/j.freeradbiomed.2012.02.001

H. Tse, M. Milton, and J. Piganelli, Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation???reduction reactions in innate immunity, Free Radical Biology and Medicine, vol.36, issue.2, pp.233-247, 2004.
DOI : 10.1016/j.freeradbiomed.2003.10.029

Z. Rabbani, I. Spasojevic, and X. Zhang, Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP5+, via suppression of oxidative stress in a mouse model of breast tumor, Free Radical Biology and Medicine, vol.47, issue.7, pp.992-1004, 2009.
DOI : 10.1016/j.freeradbiomed.2009.07.001

M. Jaramillo, M. Briehl, I. Batinic-haberle, and M. Tome, Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells, Free Radical Biology and Medicine, vol.83, issue.0, pp.89-100, 2015.
DOI : 10.1016/j.freeradbiomed.2015.01.031

A. Tovmasyan, R. Sampaio, and M. Boss, Anticancer therapeutic potential of Mn porphyrin/ascorbate system, Free Radical Biology and Medicine, vol.89, pp.1231-1247, 2015.
DOI : 10.1016/j.freeradbiomed.2015.10.416

G. Tovmasyan, Y. Jones, D. Spasojevic, and I. , Redox-Active Mn Porphyrins, MnTE-2-PyP 5+ and MnTnBuOE-2-PyP 5+ But Not Redox-Inert MnTBAP 3- Suppress Tumor Growth in an Environment Where H 2 O 2 Is Produced, Free Radical Biology and Medicine, vol.100, issue.S1, p.93, 2016.
DOI : 10.1016/j.freeradbiomed.2016.10.232