S. Roche, G. D. Ippolito, L. A. Gomez, T. Bouckenooghe, S. Lehmann et al., Comparative analysis of protein expression of three stem cell populations: Models of cytokine delivery system in vivo, International Journal of Pharmaceutics, vol.440, issue.1, pp.440-72, 2013.
DOI : 10.1016/j.ijpharm.2011.12.041

URL : https://hal.archives-ouvertes.fr/inserm-00802595

R. A. Boomsma and D. L. Geenen, Mesenchymal Stem Cells Secrete Multiple Cytokines That Promote Angiogenesis and Have Contrasting Effects on Chemotaxis and Apoptosis, PLoS ONE, vol.3, issue.4, pp.1-8, 2012.
DOI : 10.1371/journal.pone.0035685.t002

J. S. Lee, J. M. Hong, G. J. Moon, P. H. Lee, Y. H. Ahn et al., A Long-Term Follow-Up Study of Intravenous Autologous Mesenchymal Stem Cell Transplantation in Patients With Ischemic Stroke, STEM CELLS, vol.25, issue.Suppl, pp.1099-1106, 2010.
DOI : 10.1093/jnen/63.1.84

X. Wei, X. Yang, Z. P. Han, F. F. Qu, L. Shao et al., Mesenchymal stem cells: a new trend for cell therapy, Acta Pharmacologica Sinica, vol.15, issue.6, pp.747-754, 2013.
DOI : 10.1038/nm.1905

R. Wagey and B. Short, Mesenchymal stem and progenitor cells: problems, potential and promise, J. Stem Cells Res. Rev. Rep, vol.1, issue.4, pp.2014-1016

G. D. Ippolito, S. Diabira, G. A. Howard, P. Menei, B. A. Roos et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential, Journal of Cell Science, vol.117, issue.14, pp.2971-2981, 2004.
DOI : 10.1242/jcs.01103

V. M. Tatard, G. D. Ippolito, S. Diabira, A. Valeyev, J. Hackman et al., Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons, Bone, vol.40, issue.2, pp.360-373, 2007.
DOI : 10.1016/j.bone.2006.09.013

C. Rios, G. D. Ippolito, K. M. Curtis, G. J. Delcroix, L. A. Gomez et al., Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells, Stem Cells and Development, vol.25, issue.11, pp.848-860, 2016.
DOI : 10.1089/scd.2015.0362

URL : http://europepmc.org/articles/pmc4892221?pdf=render

A. Rahnemai-azar, G. D. Ippolito, L. A. Gomez, T. Reiner, R. I. Vazquez-padron et al., Human marrow-isolated adult multilineage-inducible (MIAMI) cells protect against peripheral vascular ischemia in a mouse model, Cytotherapy, vol.13, issue.2, pp.179-192, 2011.
DOI : 10.3109/14653249.2010.515579

G. J. Delcroix, K. M. Curtis, P. C. Schiller, and C. N. Montero-menei, EGF and bFGF pretreatment enhances neural specification and the response to neuronal commitment of MIAMI cells, Differentiation, vol.80, pp.4-5, 2010.
DOI : 10.1016/j.diff.2010.07.001

G. J. Delcroix, P. C. Schiller, J. P. Benoit, and C. N. Montero-menei, Adult cell therapy for brain neuronal damages and the role of tissue engineering, Biomaterials, vol.31, issue.8, pp.2105-2120, 2010.
DOI : 10.1016/j.biomaterials.2009.11.084

E. R. Aurand, K. J. Lampe, and K. B. Bjugstad, Defining and designing polymers and hydrogels for neural tissue engineering, Neuroscience Research, vol.72, issue.3, pp.199-213, 2012.
DOI : 10.1016/j.neures.2011.12.005

URL : http://europepmc.org/articles/pmc3408056?pdf=render

E. M. Andre, C. Passirani, B. Seijo, A. Sanchez, and C. N. Montero-menei, Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease, Biomaterials, vol.83, pp.347-362, 2016.
DOI : 10.1016/j.biomaterials.2015.12.008

V. M. Tatard, M. C. Venier-julienne, P. Saulnier, E. Prechter, J. P. Benoit et al., Pharmacologically active microcarriers: a tool for cell therapy, Biomaterials, vol.26, issue.17, pp.3727-3737, 2005.
DOI : 10.1016/j.biomaterials.2004.09.042

C. Penna, M. G. Perrelli, J. P. Karam, C. Angotti, C. Muscari et al., Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival, Journal of Cellular and Molecular Medicine, vol.2, issue.11 Suppl., pp.192-204, 2013.
DOI : 10.1517/17425247.2.2.363

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1582-4934.2012.01662.x/pdf

C. Musilli, J. P. Karam, S. Paccosi, C. Muscari, A. Mugelli et al., Pharmacologically active microcarriers for endothelial progenitor cell support and survival, European Journal of Pharmaceutics and Biopharmaceutics, vol.81, issue.3, pp.609-616, 2012.
DOI : 10.1016/j.ejpb.2012.04.014

M. Morille, T. Van-thanh, X. Garric, J. Cayon, J. Coudane et al., New PLGA???P188???PLGA matrix enhances TGF-??3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells, Journal of Controlled Release, vol.170, issue.1, pp.99-110, 2013.
DOI : 10.1016/j.jconrel.2013.04.017

URL : https://hal.archives-ouvertes.fr/hal-00881128

E. Garbayo, A. P. Raval, K. M. Curtis, D. Della-morte, L. A. Gomez et al., Neuroprotective properties of marrow-isolated adult multilineage-inducible cells in rat hippocampus following global cerebral ischemia are enhanced when complexed to biomimetic microcarriers, Journal of Neurochemistry, vol.1310, issue.6, pp.972-988, 2011.
DOI : 10.1016/j.brainres.2009.11.012

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2011.07272.x/pdf

G. J. Delcroix, E. Garbayo, L. Sindji, O. Thomas, C. Vanpouille-box et al., The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats, Biomaterials, vol.32, issue.6, pp.1560-1573, 2011.
DOI : 10.1016/j.biomaterials.2010.10.041

URL : https://hal.archives-ouvertes.fr/inserm-00541842

N. Daviaud, E. Garbayo, L. Sindji, A. Martinez-serrano, P. C. Schiller et al., Survival, Differentiation, and Neuroprotective Mechanisms of Human Stem Cells Complexed With Neurotrophin-3-Releasing Pharmacologically Active Microcarriers in an Ex Vivo Model of Parkinson's Disease, STEM CELLS Translational Medicine, vol.17, issue.6, pp.670-684, 2015.
DOI : 10.1007/s10495-011-0679-9

A. H. Nagahara and M. H. Tuszynski, Potential therapeutic uses of BDNF in neurological and psychiatric disorders, Cattaneo, Brain-derived neurotrophic factor in neurodegenerative diseases, pp.209-219, 2009.
DOI : 10.1016/j.ymthe.2005.01.007

S. S. Gill, N. K. Patel, G. R. Hotton, K. O-'sullivan, R. Mccarter et al., Direct brain infusion of glial cell line???derived neurotrophic factor in Parkinson disease, Nature Medicine, vol.5, issue.Suppl. 1, pp.589-595, 2003.
DOI : 10.1038/jcbfm.1985.87

]. A. Giteau, M. C. Venier-julienne, S. Marchal, J. L. Courthaudon, M. Sergent et al., Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres, European Journal of Pharmaceutics and Biopharmaceutics, vol.70, issue.1, pp.127-136, 2008.
DOI : 10.1016/j.ejpb.2008.03.006

J. P. Karam, C. Muscari, L. Sindji, G. Bastiat, F. Bonafe et al., Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering, Journal of Controlled Release, vol.192, pp.82-94, 2014.
DOI : 10.1016/j.jconrel.2014.06.052

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia et al., The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells, Biomaterials, vol.30, issue.27, pp.4695-4699, 2009.
DOI : 10.1016/j.biomaterials.2009.05.050

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.215-228, 2002.
DOI : 10.1016/S0001-8686(02)00035-0

URL : https://hal.archives-ouvertes.fr/inserm-00198799

C. Merceron, S. Portron, M. Masson, J. Lesoeur, B. H. Fellah et al., The Effect of Two- and Three-Dimensional Cell Culture on the Chondrogenic Potential of Human Adipose-Derived Mesenchymal Stem Cells after Subcutaneous Transplantation with an Injectable Hydrogel, Cell Transplantation, vol.7, issue.10, pp.1575-1588, 2011.
DOI : 10.1089/107632701300062859

J. Vandesompele, K. De-preter, F. Pattyn, B. Poppe, N. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, issue.7, pp.1-12, 2002.

A. M. Parr, C. H. Tator, and A. Keating, Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury, Bone Marrow Transplantation, vol.8, issue.7, pp.609-619, 2007.
DOI : 10.1093/jnen/64.1.37

V. M. Tatard, P. Menei, J. P. Benoit, and C. N. Montero-menei, Combining Polymeric Devices and Stem Cells for the Treatment of Neurological Disorders: A Promising Therapeutic Approach, Current Drug Targets, vol.6, issue.1, pp.81-96, 2005.
DOI : 10.2174/1389450053344885

A. Giteau, M. C. Venier-julienne, A. Aubert-pouessel, and J. P. Benoit, How to achieve sustained and complete protein release from PLGA-based microparticles?, International Journal of Pharmaceutics, vol.350, issue.1-2, pp.1-2, 2008.
DOI : 10.1016/j.ijpharm.2007.11.012

URL : https://hal.archives-ouvertes.fr/inserm-00258087

A. Paillard-giteau, V. T. Tran, O. Thomas, X. Garric, J. Coudane et al., Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique, European Journal of Pharmaceutics and Biopharmaceutics, vol.75, issue.2, pp.128-136, 2010.
DOI : 10.1016/j.ejpb.2010.03.005

URL : https://hal.archives-ouvertes.fr/hal-00626154

J. H. Gu, J. B. Ge, M. Li, H. D. Xu, and F. Wu, Poloxamer 188 Protects Neurons against Ischemia/Reperfusion Injury through Preserving Integrity of Cell Membranes and Blood Brain Barrier, PLoS ONE, vol.10, issue.4, pp.1-11, 2013.
DOI : 10.1371/journal.pone.0061641.g006

URL : https://doi.org/10.1371/journal.pone.0061641

S. B. Cadichon, M. L. Hoang, D. A. Wright, D. J. Curry, U. Kang et al., Neuroprotective effect of the surfactant poloxamer 188 in a model of intracranial hemorrhage in rats, Journal of Neurosurgery: Pediatrics, vol.41, issue.1, pp.36-40, 2007.
DOI : 10.1016/S0304-3940(00)00971-X

J. P. Bertram, M. F. Rauch, K. Chang, and E. B. Lavik, Using Polymer Chemistry to Modulate the Delivery of Neurotrophic Factors from Degradable Microspheres: Delivery of BDNF, Pharmaceutical Research, vol.1, issue.1, pp.82-91, 2010.
DOI : 10.1016/0168-3659(94)90263-1

A. Fatimi, J. F. Tassin, S. Quillard, M. A. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, issue.5, pp.533-543, 2008.
DOI : 10.1016/j.biomaterials.2007.10.032

URL : https://hal.archives-ouvertes.fr/inserm-00383358

K. Saha, A. J. Keung, E. F. Irwin, Y. Li, L. Little et al., Substrate Modulus Directs Neural Stem Cell Behavior, Biophysical Journal, vol.95, issue.9, pp.4426-4438, 2008.
DOI : 10.1529/biophysj.108.132217

URL : https://doi.org/10.1529/biophysj.108.132217

G. J. Her, H. C. Wu, M. H. Chen, M. Y. Chen, S. C. Chang et al., Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages, Acta Biomaterialia, vol.9, issue.2, pp.5170-5180, 2013.
DOI : 10.1016/j.actbio.2012.10.012

W. H. Chen, S. J. Cheng, J. T. Tzen, C. M. Cheng, and Y. W. Lin, Probing Relevant Molecules in Modulating the Neurite Outgrowth of Hippocampal Neurons on Substrates of Different Stiffness, PLoS ONE, vol.110, issue.12, pp.1-8, 2013.
DOI : 10.1371/journal.pone.0083394.s004

N. Buchtova, G. Rethore, C. Boyer, J. Guicheux, F. Rambaud et al., Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide, Journal of Materials Science: Materials in Medicine, vol.26, issue.256, pp.24-1875, 2013.
DOI : 10.1016/j.biomaterials.2005.04.057

URL : https://hal.archives-ouvertes.fr/hal-00980258

C. J. Zagami, M. Zusso, and S. Stifani, Runx transcription factors: Lineage-specific regulators of neuronal precursor cell proliferation and post-mitotic neuron subtype development, Journal of Cellular Biochemistry, vol.303, issue.6, pp.1063-1072, 2009.
DOI : 10.1615/CritRevEukarGeneExpr.v16.i1.30

S. Laib, B. H. Fellah, A. Fatimi, S. Quillard, C. Vinatier et al., The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering, Biomaterials, vol.30, issue.8, pp.1568-1577, 2009.
DOI : 10.1016/j.biomaterials.2008.11.031

URL : https://hal.archives-ouvertes.fr/inserm-00352650

R. Taran, M. K. Mamidi, G. Singh, S. Dutta, I. S. Parhar et al., In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources, Journal of Biosciences, vol.30, issue.1, pp.157-169, 2014.
DOI : 10.1016/j.ijdevneu.2012.05.006

L. Bai, D. P. Lennon, A. I. Caplan, A. Dechant, J. Hecker et al., Hepatocyte growth factor mediates mesenchymal stem cell???induced recovery in multiple sclerosis models, Nature Neuroscience, vol.34, issue.6, pp.862-870, 2012.
DOI : 10.1016/j.exphem.2006.07.014

URL : http://europepmc.org/articles/pmc3427471?pdf=render

F. Wang, T. Yasuhara, T. Shingo, M. Kameda, N. Tajiri et al., Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1??, BMC Neuroscience, vol.11, issue.1, pp.1-9, 2010.
DOI : 10.1186/1471-2202-11-52

M. I. Ransome and A. M. Turnley, Erythropoietin promotes axonal growth in a model of neuronal polarization, Molecular and Cellular Neuroscience, vol.38, issue.4, pp.537-547, 2008.
DOI : 10.1016/j.mcn.2008.05.002

S. Sugiura, R. Lahav, J. Han, S. Y. Kou, L. R. Banner et al., Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro, European Journal of Neuroscience, vol.19, issue.2, pp.457-466, 2000.
DOI : 10.1016/S0091-6749(99)70125-9

E. Storkebaum, D. Lambrechts, and P. Carmeliet, VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection, BioEssays, vol.358, issue.9, pp.943-954, 2004.
DOI : 10.1016/S0140-6736(01)06260-2

Y. Zhou, Z. Yan, H. Zhang, W. Lu, S. Liu et al., Expansion and Delivery of Adipose-Derived Mesenchymal Stem Cells on Three Microcarriers for Soft Tissue Regeneration, Tissue Engineering Part A, vol.17, issue.23-24, pp.23-24, 2011.
DOI : 10.1089/ten.tea.2010.0707

S. Sart, S. N. Agathos, and Y. Li, Engineering stem cell fate with biochemical and biomechanical properties of microcarriers, Biotechnology Progress, vol.16, issue.6, pp.1354-1366, 2013.
DOI : 10.1089/ten.tea.2009.0454

P. M. Vidal, E. Lemmens, D. Dooley, and S. Hendrix, The role of ???anti-inflammatory??? cytokines in axon regeneration, Cytokine & Growth Factor Reviews, vol.24, issue.1, pp.1-12, 2013.
DOI : 10.1016/j.cytogfr.2012.08.008

A. H. Nagahara, D. A. Merrill, G. Coppola, S. Tsukada, B. E. Schroeder et al., Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease, Nature Medicine, vol.109, issue.3, pp.331-337, 2009.
DOI : 10.1016/0028-3932(91)90063-E

T. Tsukahara, M. Takeda, S. Shimohama, O. Ohara, and N. Hashimoto, Effects of Brain-derived Neurotrophic Factor on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in Monkeys, Neurosurgery, vol.59, issue.4, pp.739-741, 1995.
DOI : 10.1111/j.1471-4159.1992.tb09429.x

C. Giampa, E. Montagna, C. Dato, M. A. Melone, G. Bernardi et al., Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington's disease, PLoS One, vol.8, issue.5, pp.1-12, 2013.

A. Giralt, O. Carreton, C. Lao-peregrin, E. D. Martin, and J. , Alberch, Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction, Mol. Neurodegener, vol.6, issue.1, pp.1-16, 2011.
DOI : 10.1186/1750-1326-6-71

URL : https://doi.org/10.1186/1750-1326-6-71