C. Mason and P. Dunnill, A brief definition of regenerative medicine, Regenerative Medicine, vol.2, issue.1, pp.1-5, 2008.
DOI : 10.1186/1471-2202-8-36

E. Place, N. Evans, and M. Stevens, Complexity in biomaterials for tissue engineering, Nature Materials, vol.188, issue.6, pp.457-70, 2009.
DOI : 10.1002/jbm.a.32073

, Available from:. https, OPTN: Organ Procurement and Transplantation Network -OPTN [Internet], 2016.

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-89, 2006.
DOI : 10.1016/j.cell.2006.06.044

O. Veiseh, J. Doloff, M. Ma, A. Vegas, H. Tam et al., Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates, Nature Materials, vol.28, issue.6, pp.643-51, 2015.
DOI : 10.1016/S0006-3495(89)82669-4

M. Pakulska, S. Miersch, and M. Shoichet, Designer protein delivery: From natural to engineered affinity-controlled release systems, Science, vol.374, issue.9, p.4750, 2016.
DOI : 10.1016/S0076-6879(03)74020-8

L. Chow and J. Fischer, Creating biomaterials with spatially organized functionality, Experimental Biology and Medicine, vol.260, issue.10, pp.1025-1057, 2016.
DOI : 10.1002/adma.201503310

O. Wichterle and D. Lím, Hydrophilic Gels for Biological Use, Nature, vol.185, issue.4706, pp.117-125, 1960.
DOI : 10.1038/185117a0

A. Sivashanmugam, A. Kumar, R. , V. Priya, M. Nair et al., An overview of injectable polymeric hydrogels for tissue engineering, European Polymer Journal, vol.72, pp.543-65, 2015.
DOI : 10.1016/j.eurpolymj.2015.05.014

A. Hoffman, Hydrogels for biomedical applications Adv Drug Deliv Rev 2012 décembre, pp.18-23

C. Highley, G. Prestwich, and J. Burdick, Recent advances in hyaluronic acid hydrogels for biomedical applications, Current Opinion in Biotechnology, vol.40, pp.35-40, 2016.
DOI : 10.1016/j.copbio.2016.02.008

B. Slaughter, S. Khurshid, O. Fisher, A. Khademhosseini, and N. Peppas, Hydrogels in Regenerative Medicine, Advanced Materials, vol.13, issue.32-33, pp.32-333307, 2009.
DOI : 10.1002/jbm.b.30729

A. Rosales and K. Anseth, The design of reversible hydrogels to capture extracellular matrix dynamics, Nature Reviews Materials, vol.264, issue.2, p.201512, 2016.
DOI : 10.1002/anie.200902538

. About and ]. Internet, , 2016.

F. Ullah, M. Othman, F. Javed, Z. Ahmad, and H. Akil, Classification, processing and application of hydrogels: A review, Materials Science and Engineering: C, vol.57, pp.414-447, 2015.
DOI : 10.1016/j.msec.2015.07.053

J. Hilborn, injectable gels for tissue repair, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.59, issue.6, pp.589-606, 2011.
DOI : 10.1016/j.addr.2007.03.017

V. Marx, Where stem cells call home, Nature Methods, vol.9, issue.2, pp.111-116, 2013.
DOI : 10.1038/nmeth.1732

J. Morrison, S. Lööf, P. He, and A. Simon, Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population, The Journal of Cell Biology, vol.129, issue.3, pp.433-473, 2006.
DOI : 10.1083/jcb.200312007

B. Gillette, J. Jensen, M. Wang, J. Tchao, and S. Sia, Dynamic Hydrogels: Switching of 3D Microenvironments Using Two-Component Naturally Derived Extracellular Matrices, Advanced Materials, vol.15, issue.6, pp.686-91, 2010.
DOI : 10.1089/ten.tec.2008.0582

B. Brown and S. Badylak, Extracellular matrix as an inductive scaffold for functional tissue reconstruction, Translational Research, vol.163, issue.4, pp.268-85, 2014.
DOI : 10.1016/j.trsl.2013.11.003

URL : http://europepmc.org/articles/pmc4203714?pdf=render

H. Birkedal-hansen, Proteolytic remodeling of extracellular matrix, Current Opinion in Cell Biology, vol.7, issue.5, pp.728-763, 1995.
DOI : 10.1016/0955-0674(95)80116-2

S. Badylak, The extracellular matrix as a biologic scaffold material???, Biomaterials, vol.28, issue.25, pp.3587-93, 2007.
DOI : 10.1016/j.biomaterials.2007.04.043

D. Williams, The Williams Dictionary of Biomaterials, 1999.

B. Ratner, The Biocompatibility Manifesto: Biocompatibility for the Twenty-first Century, Journal of Cardiovascular Translational Research, vol.14, issue.11, pp.523-530, 2011.
DOI : 10.1089/ten.tea.2007.0264

URL : https://link.springer.com/content/pdf/10.1007%2Fs12265-011-9287-x.pdf

J. Anderson, Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility, Regen Biomater, 2016.

, -Biological evaluation of medical devices ? Part 5: Tests for in vitro cytotoxicity Available from, Internet] ISO, 2016.

L. Lambricht, D. Berdt, P. Vanacker, J. Leprince, J. Diogenes et al., The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla, Dental Materials, vol.30, issue.12, pp.349-61, 2014.
DOI : 10.1016/j.dental.2014.08.369

D. Bitar and J. Parvizi, Biological response to prosthetic debris, World Journal of Orthopedics, vol.6, issue.2, pp.172-89, 2015.
DOI : 10.5312/wjo.v6.i2.172

J. Anderson, A. Rodriguez, and D. Chang, Foreign body reaction to biomaterials, Seminars in Immunology, vol.20, issue.2, pp.86-100, 2008.
DOI : 10.1016/j.smim.2007.11.004

C. Esche, C. Stellato, and L. Beck, Chemokines: Key Players in Innate and Adaptive Immunity, Journal of Investigative Dermatology, vol.125, issue.4, pp.615-643, 2005.
DOI : 10.1111/j.0022-202X.2005.23841.x

J. Morais, F. Papadimitrakopoulos, and D. Burgess, Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response, The AAPS Journal, vol.12, issue.2, 2010.
DOI : 10.1208/s12248-010-9175-3

A. Vishwakarma, N. Bhise, M. Evangelista, J. Rouwkema, M. Dokmeci et al., Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response, Trends in Biotechnology, vol.34, issue.6, pp.470-82, 2016.
DOI : 10.1016/j.tibtech.2016.03.009

J. Lewis, K. Roy, and B. Keselowsky, Materials that harness and modulate the immune system, MRS Bulletin, vol.24, issue.01, pp.25-34, 2014.
DOI : 10.1093/clinids/2.3.370

G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, vol.277, issue.5330, pp.1232-1239, 1997.
DOI : 10.1126/science.277.5330.1232

W. Brodbeck, J. Patel, G. Voskerician, E. Christenson, M. Shive et al., Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo, Proceedings of the National Academy of Sciences, vol.276, issue.5317, pp.10287-92, 2002.
DOI : 10.1126/science.276.5317.1425

B. Corradetti, F. Taraballi, S. Minardi, J. Van-eps, F. Cabrera et al., Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis, STEM CELLS Translational Medicine, vol.26, issue.suppl 2, 2016.
DOI : 10.1016/j.biomaterials.2004.02.045

S. Chen, J. Jones, Y. Xu, H. Low, J. Anderson et al., Characterization of topographical effects on macrophage behavior in a foreign body response model, Biomaterials, vol.31, issue.13, pp.3479-91, 2010.
DOI : 10.1016/j.biomaterials.2010.01.074

F. Mcwhorter, T. Wang, P. Nguyen, T. Chung, and W. Liu, Modulation of macrophage K, Flégeau et al. Advances in Colloid and Interface Science, vol.247, pp.589-609, 2017.

, phenotype by cell shape, Proc Natl Acad Sci, vol.110, issue.43, pp.17253-17261, 2013.

P. Hume, C. Bowman, and K. Anseth, Functionalized PEG hydrogels through reactive dip-coating for the formation of immunoactive barriers, Biomaterials, vol.32, issue.26, 2011.
DOI : 10.1016/j.biomaterials.2011.04.049

R. Sridharan, A. Cameron, D. Kelly, C. Kearney, O. Brien et al., Biomaterial based modulation of macrophage polarization: a review and suggested design principles, Materials Today, vol.18, issue.6, pp.313-338, 2015.
DOI : 10.1016/j.mattod.2015.01.019

C. Cha, W. Liechty, A. Khademhosseini, and N. Peppas, Designing Biomaterials To Direct Stem Cell Fate, ACS Nano, vol.6, issue.11, pp.9353-9361, 2012.
DOI : 10.1021/nn304773b

J. Grim, I. Marozas, and K. Anseth, Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels, Journal of Controlled Release, vol.219, pp.95-106, 2015.
DOI : 10.1016/j.jconrel.2015.08.040

P. Wipff, D. Rifkin, J. Meister, and B. Hinz, Myofibroblast contraction activates latent TGF-??1 from the extracellular matrix, The Journal of Cell Biology, vol.114, issue.6, pp.1311-1334, 2007.
DOI : 10.1083/jcb.141.2.539

D. Benoit and K. Anseth, Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation, Acta Biomaterialia, vol.1, issue.4, 2005.
DOI : 10.1016/j.actbio.2005.03.002

J. Mccall, J. Luoma, and K. Anseth, Covalently tethered transforming growth factor beta in PEG hydrogels promotes chondrogenic differentiation of encapsulated human mesenchymal stem cells, Drug Delivery and Translational Research, vol.32, issue.34, pp.305-317, 2012.
DOI : 10.1016/j.biomaterials.2011.08.073

M. Fabiilli, C. Wilson, F. Padilla, F. Martín-saavedra, J. Fowlkes et al., Acoustic droplet???hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness, Acta Biomaterialia, vol.9, issue.7, pp.7399-409, 2013.
DOI : 10.1016/j.actbio.2013.03.027

E. Sletten and C. Bertozzi, Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality, Angewandte Chemie International Edition, vol.458, issue.38, pp.6974-98, 2009.
DOI : 10.1093/nar/3.9.2331

G. Ellis-davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nature Methods, vol.44, issue.8, pp.619-647, 2007.
DOI : 10.1113/jphysiol.1996.sp021475

C. Deforest and D. Tirrell, A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels, Nature Materials, vol.113, issue.5, 2015.
DOI : 10.1016/j.biomaterials.2009.05.083

K. Mosiewicz, L. Kolb, A. Van-der-vlies, M. Martino, P. Lienemann et al., In situ cell manipulation through enzymatic hydrogel photopatterning, situ cell manipulation through enzymatic hydrogel photopatterning, pp.1072-1080, 2013.
DOI : 10.1083/jcb.143.5.1341

D. Kuraitis, C. Giordano, M. Ruel, A. Musarò, and E. Suuronen, Exploiting extracellular matrix-stem cell interactions: A review of natural materials for therapeutic muscle regeneration, Biomaterials, vol.33, issue.2, pp.428-471, 2012.
DOI : 10.1016/j.biomaterials.2011.09.078

U. Hersel, C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials, vol.24, issue.24, pp.4385-415, 2003.
DOI : 10.1016/S0142-9612(03)00343-0

N. Walters and E. Gentleman, Evolving insights in cell???matrix interactions: Elucidating how non-soluble properties of the extracellular niche direct stem cell fate, Acta Biomaterialia, vol.11, pp.3-16, 2015.
DOI : 10.1016/j.actbio.2014.09.038

N. Wang, K. Naruse, D. Stamenovi?, J. Fredberg, S. Mijailovich et al., Mechanical behavior in living cells consistent with the tensegrity model, Proceedings of the National Academy of Sciences, vol.75, issue.3, pp.7765-70, 2001.
DOI : 10.1016/S0006-3495(98)74076-7

E. Cavalcanti-adam, D. Aydin, V. Hirschfeld-warneken, and J. Spatz, Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location, HFSP Journal, vol.2, issue.5, pp.276-85, 2008.
DOI : 10.2976/1.2976662

N. Huebsch, P. Arany, A. Mao, D. Shvartsman, O. Ali et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate, Nature Materials, vol.20, issue.6, pp.518-544, 2010.
DOI : 10.1083/jcb.200810002

O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. Bencherif et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity, Nature Materials, vol.75, issue.3, pp.326-360, 2016.
DOI : 10.2106/00004623-199301000-00012

G. Halder, S. Dupont, and S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ, Nature Reviews Molecular Cell Biology, vol.71, issue.9, pp.591-600, 2012.
DOI : 10.1038/nrm3416

J. Tse and A. Engler, Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate Available from, PLoS ONE, vol.6, issue.1, 2011.

C. Yang, M. Tibbitt, L. Basta, and K. Anseth, Mechanical memory and dosing influence stem cell fate, Nature Materials, vol.13, issue.6, pp.645-52, 2014.
DOI : 10.1002/term.435

S. Caliari, M. Perepelyuk, B. Cosgrove, S. Tsai, G. Lee et al., Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci Rep, Feb, vol.246, issue.4764908, 2016.

A. Rosales, K. Mabry, E. Nehls, and K. Anseth, Photoresponsive Elastic Properties of Azobenzene-Containing Poly(ethylene-glycol)-Based Hydrogels, Biomacromolecules, vol.16, issue.3, pp.798-806, 2009.
DOI : 10.1021/bm501710e

G. Abrams, S. Goodman, P. Nealey, M. Franco, and C. Murphy, Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque, Cell and Tissue Research, vol.299, issue.1, pp.39-46, 2000.
DOI : 10.1007/s004410050004

M. Dalby, N. Gadegaard, R. Tare, A. Andar, M. Riehle et al., The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder, Nature Materials, vol.6, issue.12, pp.997-1003, 2007.
DOI : 10.1016/j.febslet.2004.07.055

D. Angelo, F. Armentano, I. Mattioli, S. Crispoltoni, L. Tiribuzi et al., Micropatterned hydrogenated amorphous carbon guides mesenchymal stem cells towards neuronal differentiation, Eur Cell Mater, vol.20, pp.231-275, 2010.

J. Kiang, J. Wen, J. Del-Álamo, and A. Engler, Dynamic and reversible surface topography influences cell morphology, Journal of Biomedical Materials Research Part A, vol.89, issue.8, 2013.
DOI : 10.1529/biophysj.104.058701

R. Xie, J. Hu, X. Guo, F. Ng, and T. Qin, Topographical Control of Preosteoblast Culture by Shape Memory Foams???, Advanced Engineering Materials, vol.15, issue.1, 2017.
DOI : 10.1023/B:JMSM.0000021113.88702.9d

R. Mcmurray, N. Gadegaard, P. Tsimbouri, K. Burgess, L. Mcnamara et al., Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency, Nature Materials, vol.288, issue.4, pp.637-681, 2011.
DOI : 10.1002/mame.200290037

M. Dalby, N. Gadegaard, and R. Oreffo, Harnessing nanotopography and integrin???matrix interactions to influence stem cell fate, Nature Materials, vol.104, issue.6, pp.558-69, 2014.
DOI : 10.1038/nmeth.1732

M. Habal and A. Reddi, Bone grafts and bone induction substitutes, Clin Plast Surg, vol.21, issue.4, pp.525-567, 1994.

K. Kyburz and K. Anseth, Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough?, Annals of Biomedical Engineering, vol.13, issue.1, pp.489-500, 2015.
DOI : 10.1038/nmat3889

S. Khetan, M. Guvendiren, W. Legant, D. Cohen, C. Chen et al., Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels, Nature Materials, vol.14, issue.5, pp.458-65, 2013.
DOI : 10.1364/OE.17.004685

M. Caiazzo, Y. Okawa, A. Ranga, A. Piersigilli, Y. Tabata et al., Defined three-dimensional microenvironments boost induction of pluripotency, Nature Materials, vol.15, issue.3, pp.344-52, 2016.
DOI : 10.1371/journal.pone.0016092

M. Lee, B. Wu, and J. Dunn, Effect of scaffold architecture and pore size on smooth muscle cell growth, Journal of Biomedical Materials Research Part A, vol.7, issue.4, pp.1010-1016, 2008.
DOI : 10.1002/jbm.a.31816

M. Rumpler, A. Woesz, J. Dunlop, J. Van-dongen, and P. Fratzl, The effect of geometry on three-dimensional tissue growth, Journal of The Royal Society Interface, vol.25, issue.5, pp.1173-80, 2008.
DOI : 10.1016/j.msec.2005.01.014

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, pp.5474-91, 2005.
DOI : 10.1016/j.biomaterials.2005.02.002

A. Salerno and P. Nettis, Optimal design and manufacture of biomedical foam pore structure for tissue engineering applications, pp.71-100, 2016.
DOI : 10.1533/9780857097033.1.71

M. Singh, C. Berkland, and M. Detamore, Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering, Tissue Engineering Part B: Reviews, vol.14, issue.4, pp.341-66, 2008.
DOI : 10.1089/ten.teb.2008.0304

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737593

K. Uto, J. Tsui, C. Deforest, and D. Kim, Dynamically tunable cell culture platforms for tissue engineering and mechanobiology, Progress in Polymer Science, vol.65, pp.53-82, 2017.
DOI : 10.1016/j.progpolymsci.2016.09.004

URL : http://europepmc.org/articles/pmc5432044?pdf=render

S. Gladman, A. Matsumoto, E. Nuzzo, R. Mahadevan, L. Lewis et al., Biomimetic 4D printing, Nature Materials, vol.84, issue.4, pp.413-421, 2016.
DOI : 10.1021/ma202114z

S. Bhatia and D. Ingber, Microfluidic organs-on-chips, Nature Biotechnology, vol.13, issue.8, pp.760-72, 2014.
DOI : 10.1039/b917763a

A. Ranga, S. Gobaa, Y. Okawa, K. Mosiewicz, A. Negro et al., 3D niche microarrays for systems-level analyses of cell fate, Nature Communications, vol.11, issue.1, 2014.
DOI : 10.1021/bm100357t

URL : http://www.nature.com/articles/ncomms5324.pdf

S. Patz, N. Nazari, K. Schregel, M. Palotai, P. Barbone et al., Functional neuro-imaging with magnetic resonance elastography, The Journal of the Acoustical Society of America, vol.141, issue.5, p.3492, 2017.
DOI : 10.1121/1.4987292

B. Cosgrove, P. Gilbert, E. Porpiglia, F. Mourkioti, S. Lee et al., Rejuvenation of the muscle stem cell population restores strength to injured aged muscles, Nature Medicine, vol.130, issue.3, pp.255-64, 2014.
DOI : 10.1002/jmor.1051730206

URL : http://europepmc.org/articles/pmc3949152?pdf=render

M. Tibbitt and K. Anseth, Dynamic Microenvironments: The Fourth Dimension, Science Translational Medicine, vol.60, issue.1, pp.160-184, 2012.
DOI : 10.1002/ana.20901

M. Cowman, H. Lee, K. Schwertfeger, J. Mccarthy, and E. Turley, The Content and Size of Hyaluronan in Biological Fluids and Tissues Front Immunol Available from, 2015.

K. Girish and K. Kemparaju, The magic glue hyaluronan and its eraser hyaluronidase: A biological overview, Life Sciences, vol.80, issue.21, pp.1921-1964, 2007.
DOI : 10.1016/j.lfs.2007.02.037

, Facial Fillers ? Anti-wrinkle Treatments for Reducing Face Lines | Juvéderm® Range of Fillers

H. Fidia-introduces, Available from. http://fidiapharma.us/fidia-introduces-hymovis-a-next- generation-hyaluronan-at-the-aaos-annual-meeting-in-orlando, AAOS Annual Meeting in Orlando [Internet] Fidia Pharma USA Inc, 2016.

M. , Available from, Internet], 2016.

, Restylane® Products: Hyaluronic Acid Wrinkle Treatments [Internet] Available from. https, 2016.

H. Tan, K. Marra, and . Injectable, Injectable, Biodegradable Hydrogels for Tissue Engineering Applications, Materials, vol.143, issue.3, pp.1746-67, 2010.
DOI : 10.1016/S0142-9612(03)00049-8

H. Bandage and . Internet, Available from

A. Martinsen, G. Skjåk-braek, and O. Smidsrød, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnology and Bioengineering, vol.132, issue.1, pp.79-89, 1989.
DOI : 10.1016/S0008-6215(00)84354-2

K. Lee and D. Mooney, Alginate: Properties and biomedical applications, Progress in Polymer Science, vol.37, issue.1, pp.106-132, 2012.
DOI : 10.1016/j.progpolymsci.2011.06.003

J. Sun and H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications, Materials, vol.244, issue.4, pp.1285-309, 2013.
DOI : 10.1007/12_2011_118

URL : http://www.mdpi.com/1996-1944/6/4/1285/pdf

C. Godugu and M. Singh, AlgiMatrix???-Based 3D Cell Culture System as an In Vitro Tumor Model: An Important Tool in Cancer Research, Methods Mol Biol Clifton NJ, vol.1379, pp.117-145, 2016.
DOI : 10.1007/978-1-4939-3191-0_11

T. Quickgel and . Internet, Quad Technologies, 2016.

S. Hydrogel, Available from, Comfort [Internet], 2016.

C. Chang and L. Zhang, Cellulose-based hydrogels: Present status and application prospects, Carbohydrate Polymers, vol.84, issue.1, pp.40-53, 2011.
DOI : 10.1016/j.carbpol.2010.12.023

M. Shoulders, R. Raines, . Collagen, . Structure, and . Stability, Collagen Structure and Stability, Annual Review of Biochemistry, vol.78, issue.1, pp.929-58, 2009.
DOI : 10.1146/annurev.biochem.77.032207.120833

URL : http://europepmc.org/articles/pmc2846778?pdf=render

A. Lynn, I. Yannas, and W. Bonfield, Antigenicity and immunogenicity of collagen, Journal of Biomedical Materials Research, vol.19, issue.2, pp.343-54, 2004.
DOI : 10.1016/S0142-9612(98)00143-4

K. Flégeau, Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine, Advances in Colloid and Interface Science, vol.247, pp.589-609, 2017.
DOI : 10.1016/j.cis.2017.07.012

. Woun-'dres-collagen and . Hydrogel, Available from

P. Bajaj, R. Schweller, A. Khademhosseini, J. West, and R. Bashir, 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine, Annual Review of Biomedical Engineering, vol.16, issue.1, pp.247-76, 2014.
DOI : 10.1146/annurev-bioeng-071813-105155

URL : http://europepmc.org/articles/pmc4131759?pdf=render

Z. Feng, J. Zhao, Y. Li, S. Xu, J. Zhou et al., Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG, Biomaterials Science, vol.87, issue.10, pp.1493-502, 2016.
DOI : 10.1002/jbm.a.31699

, Internet]

M. Rinaudo, Chitin and chitosan: Properties and applications, Progress in Polymer Science, vol.31, issue.7, pp.603-635, 2006.
DOI : 10.1016/j.progpolymsci.2006.06.001

URL : https://hal.archives-ouvertes.fr/hal-00305792

C. Du, K. Narayanan, M. Leong, and A. Wan, Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering, Biomaterials, vol.35, issue.23, pp.6006-6020, 2014.
DOI : 10.1016/j.biomaterials.2014.04.011

J. Lehn, Supramolecular Chemistry???Scope and Perspectives Molecules, Supermolecules, and Molecular Devices(Nobel Lecture), Angewandte Chemie International Edition in English, vol.27, issue.1, pp.89-112, 1988.
DOI : 10.1002/anie.198800891

M. Webber, E. Appel, E. Meijer, R. Langer, and . Supramolecular-biomaterials, Supramolecular biomaterials, Nature Materials, vol.30, issue.1, pp.13-26, 2016.
DOI : 10.1016/j.biomaterials.2009.01.010

F. Li, J. He, M. Zhang, K. Tam, and P. Ni, Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and ??-cyclodextrin for pH-triggered drug delivery, RSC Advances, vol.6, issue.67, pp.54658-66, 2015.
DOI : 10.1021/am5022864

A. Shikanov, R. Smith, M. Xu, T. Woodruff, and L. Shea, Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture, Biomaterials, vol.32, issue.10, pp.2524-2555, 2011.
DOI : 10.1016/j.biomaterials.2010.12.027

J. Yu, F. Chen, X. Wang, N. Dong, C. Lu et al., Synthesis and characterization of MMP degradable and maleimide cross-linked PEG hydrogels for tissue engineering scaffolds, Polymer Degradation and Stability, vol.133, pp.312-332, 2016.
DOI : 10.1016/j.polymdegradstab.2016.09.008

N. Broguiere, L. Isenmann, and M. Zenobi-wong, Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks, Biomaterials, vol.99, pp.47-55, 2016.
DOI : 10.1016/j.biomaterials.2016.04.036

Y. Jiang, J. Chen, C. Deng, E. Suuronen, and Z. Zhong, Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering, Biomaterials, vol.35, issue.18, pp.4969-85, 2014.
DOI : 10.1016/j.biomaterials.2014.03.001

A. Takahashi, Y. Suzuki, T. Suhara, K. Omichi, A. Shimizu et al., In Situ Cross-Linkable Hydrogel of Hyaluronan Produced via Copper-Free Click Chemistry, Biomacromolecules, vol.14, issue.10, pp.3581-3589, 2013.
DOI : 10.1021/bm4009606

G. Grover, J. Lam, T. Nguyen, T. Segura, and H. Maynard, Biocompatible Hydrogels by Oxime Click Chemistry, Biomacromolecules, vol.13, issue.10, pp.3013-3020, 2012.
DOI : 10.1021/bm301346e

URL : http://europepmc.org/articles/pmc3474544?pdf=render

Y. Fan, C. Deng, R. Cheng, F. Meng, and Z. Zhong, Forming Hydrogels via Catalyst-Free and Bioorthogonal ???Tetrazole???Alkene??? Photo-Click Chemistry, Biomacromolecules, vol.14, issue.8, pp.2814-2835, 2013.
DOI : 10.1021/bm400637s

P. Kharkar, M. Rehmann, K. Skeens, E. Maverakis, and A. Kloxin, Thiol???ene Click Hydrogels for Therapeutic Delivery, ACS Biomaterials Science & Engineering, vol.2, issue.2, pp.165-79, 2016.
DOI : 10.1021/acsbiomaterials.5b00420

URL : http://europepmc.org/articles/pmc5369354?pdf=render

T. Brown, I. Marozas, and K. Anseth, Amplified Photodegradation of Cell-Laden Hydrogels via an Addition-Fragmentation Chain Transfer Reaction, Advanced Materials, vol.10, issue.11, 2017.
DOI : 10.1038/srep21387

URL : https://doi.org/10.1002/adma.201605001

F. Lee, J. Chung, and M. Kurisawa, An injectable hyaluronic acid???tyramine hydrogel system for protein delivery, Journal of Controlled Release, vol.134, issue.3, pp.186-93, 2009.
DOI : 10.1016/j.jconrel.2008.11.028

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.215-243, 2002.
DOI : 10.1016/S0001-8686(02)00035-0

URL : https://hal.archives-ouvertes.fr/inserm-00198799

R. Jin, M. Teixeira, L. Dijkstra, P. Van-blitterswijk, C. Karperien et al., Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran???hyaluronic acid conjugates for cartilage tissue engineering, Biomaterials, vol.31, issue.11, pp.3103-3116, 2010.
DOI : 10.1016/j.biomaterials.2010.01.013

K. Nguyen and J. West, Photopolymerizable hydrogels for tissue engineering applications, Biomaterials, vol.23, issue.22, pp.4307-4321, 2002.
DOI : 10.1016/S0142-9612(02)00175-8

K. Anseth and J. Burdick, New Directions in Photopolymerizable Biomaterials, MRS Bulletin, vol.158, issue.02, pp.130-136, 2002.
DOI : 10.1073/pnas.96.6.3104

S. Seidlits, Z. Khaing, R. Petersen, J. Nickels, J. Vanscoy et al., The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation, Biomaterials, vol.31, issue.14, pp.3930-3970, 2010.
DOI : 10.1016/j.biomaterials.2010.01.125

J. Shi, W. Guobao, H. Chen, W. Zhong, X. Qiu et al., Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment, Polym. Chem., vol.301, issue.21, pp.6180-6189, 2014.
DOI : 10.1007/s004410000193

H. Tan, H. Li, J. Rubin, and K. Marra, Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy, Journal of Tissue Engineering and Regenerative Medicine, vol.7, issue.10, pp.790-797, 2011.
DOI : 10.1002/mabi.200700035

URL : http://europepmc.org/articles/pmc3111820?pdf=render

Z. Souguir, E. About-jaudet, L. Picton, L. Cerf, and D. , Anionic Polysaccharide Hydrogels with Charges Provided by the Polysaccharide or the Crosslinking Agent, Drug Delivery Letters, vol.2, issue.4, pp.240-50, 2012.
DOI : 10.2174/2210304x11202040002

S. Bencherif, R. Sands, D. Bhatta, P. Arany, C. Verbeke et al., Injectable preformed scaffolds with shape-memory properties, Proceedings of the National Academy of Sciences, vol.9, issue.6, pp.19590-19595, 2012.
DOI : 10.1038/nmat2732

URL : http://www.pnas.org/content/109/48/19590.full.pdf

J. Lipton and H. Lipson, 3D Printing Variable Stiffness Foams Using Viscous Thread Instability. Sci Rep, p.29996, 2009.
DOI : 10.1038/srep29996

URL : http://www.nature.com/articles/srep29996.pdf

N. Annabi, J. Nichol, X. Zhong, C. Ji, S. Koshy et al., Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering, Tissue Engineering Part B: Reviews, vol.16, issue.4, pp.371-83, 2010.
DOI : 10.1089/ten.teb.2009.0639

P. Ma and J. Choi, Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network, Tissue Engineering, vol.7, issue.1, pp.23-33, 2001.
DOI : 10.1089/107632701300003269

R. Thomson, M. Yaszemski, J. Powers, and A. Mikos, Fabrication of biodegradable polymer scaffolds to engineer trabecular bone, Journal of Biomaterials Science, Polymer Edition, vol.22, issue.1, pp.23-38, 1995.
DOI : 10.1016/0032-3861(81)90045-8

M. Ho, P. Kuo, H. Hsieh, T. Hsien, L. Hou et al., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods, Biomaterials, vol.25, issue.1, pp.129-167, 2004.
DOI : 10.1016/S0142-9612(03)00483-6

H. Chavda and C. Patel, Effect of crosslinker concentration on characteristics of superporous hydrogel, International Journal of Pharmaceutical Investigation, vol.1, issue.1, pp.17-21, 2011.
DOI : 10.4103/2230-973X.76724

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465110/pdf

, Method for Preparing Porous Scaffold for Tissue Engineering, Cell Culture and Cell Delivery [Internet], 2016.

A. Testouri, L. Arriaga, C. Honorez, M. Ranft, J. Rodrigues et al., Generation of porous solids with well-controlled morphologies by combining foaming and flow chemistry on a Lab-on-a-Chip, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.413, pp.17-24, 2012.
DOI : 10.1016/j.colsurfa.2012.02.048

A. Salerno and P. Netti, 1 -Introduction to biomedical foams In: Biomedical Foams for Tissue Engineering Applications [Internet] Available from: http://www, pp.3-39, 2016.

Y. He, F. Yang, H. Zhao, Q. Gao, B. Xia et al., Research on the printability of hydrogels in 3D bioprinting. Sci Rep, p.29977, 2016.

M. Silva, L. Cyster, J. Barry, X. Yang, R. Oreffo et al., The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds, Biomaterials, vol.27, issue.35, pp.5909-5926, 2006.
DOI : 10.1016/j.biomaterials.2006.08.010

A. Salerno, S. Iannace, and P. Netti, Open-Pore Biodegradable Foams Prepared via Gas Foaming and Microparticulate Templating, Macromolecular Bioscience, vol.8, issue.7, pp.655-64, 2008.
DOI : 10.1007/978-94-015-9213-0

M. Mimeault, R. Hauke, and S. Batra, Stem Cells: A Revolution in Therapeutics???Recent Advances in Stem Cell Biology and Their Therapeutic Applications in Regenerative Medicine and Cancer Therapies, Clinical Pharmacology & Therapeutics, vol.357, issue.3, pp.252-64, 2007.
DOI : 10.3727/000000007783464687

R. Tam, T. Fuehrmann, N. Mitrousis, and M. Shoichet, Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach, Neuropsychopharmacology, vol.154, issue.1, pp.169-88, 2014.
DOI : 10.1006/exnr.1998.6951

URL : https://www.nature.com/articles/npp2013237.pdf

J. Burdick, R. Mauck, J. Gorman, and R. Gorman, Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies, Science Translational Medicine, vol.4, issue.160, pp.176-180, 2013.
DOI : 10.1126/scitranslmed.3002717

J. Lind, T. Busbee, A. Valentine, F. Pasqualini, H. Yuan et al., Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing, Nature Materials, vol.269, issue.3, pp.303-311, 2017.
DOI : 10.1161/hh0202.103644

URL : http://europepmc.org/articles/pmc5321777?pdf=render

H. Kang, S. Lee, I. Ko, C. Kengla, J. Yoo et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Nature Biotechnology, vol.34, issue.3, pp.312-321, 2016.
DOI : 10.1016/j.biomaterials.2013.01.029

S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, Bone tissue engineering using 3D printing, Materials Today, vol.16, issue.12, pp.496-504
DOI : 10.1016/j.mattod.2013.11.017

URL : https://doi.org/10.1016/j.mattod.2013.11.017

L. Ptaszek, M. Mansour, J. Ruskin, and K. Chien, Towards regenerative therapy for cardiac disease. The Lancet, Mar, vol.10379, issue.9819, pp.933-975, 2012.
DOI : 10.1016/s0140-6736(12)60075-0

E. Caló and V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products, European Polymer Journal, vol.65, pp.252-67, 2015.
DOI : 10.1016/j.eurpolymj.2014.11.024

G. Vunjak-novakovic, N. Tandon, A. Godier, R. Maidhof, A. Marsano et al., Challenges in Cardiac Tissue Engineering, Tissue Engineering Part B: Reviews, vol.16, issue.2, 2010.
DOI : 10.1089/ten.teb.2009.0352

H. Jawad, N. Ali, A. Lyon, Q. Chen, S. Harding et al., Myocardial tissue engineering: a review, Journal of Tissue Engineering and Regenerative Medicine, vol.11, issue.5, pp.327-369, 2007.
DOI : 10.1161/01.CIR.100.suppl_2.II-247

M. Radisic and K. Christman, Materials Science and Tissue Engineering: Repairing the Heart, Mayo Clinic Proceedings, vol.88, issue.8, pp.884-98, 2013.
DOI : 10.1016/j.mayocp.2013.05.003

URL : http://europepmc.org/articles/pmc3786696?pdf=render

A. Patel, T. Henry, A. Quyyumi, G. Schaer, R. Anderson et al., Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial, The Lancet, vol.387, issue.10036, pp.2412-2433, 2016.
DOI : 10.1016/S0140-6736(16)30137-4

G. Camci-unal, N. Annabi, M. Dokmeci, R. Liao, and A. Khademhosseini, Hydrogels for cardiac tissue engineering, NPG Asia Materials, vol.77, issue.5, p.99, 2014.
DOI : 10.1016/j.biomaterials.2010.08.097

T. Yoshizumi, Y. Zhu, H. Jiang, D. Amore, A. Sakaguchi et al., Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction, Biomaterials, vol.83, 2016.
DOI : 10.1016/j.biomaterials.2015.12.002

R. Lee, A. Hinson, R. Bauernschmitt, K. Matschke, Q. Fang et al., The feasibility and safety of Algisyl-LVR??? as a method of left ventricular augmentation in patients with dilated cardiomyopathy: Initial first in man clinical results, International Journal of Cardiology, vol.199, pp.18-24, 2015.
DOI : 10.1016/j.ijcard.2015.06.111

H. Cui, Y. Liu, Y. Cheng, Z. Zhang, P. Zhang et al., In Vitro Study of Electroactive Tetraaniline-Containing Thermosensitive Hydrogels for Cardiac Tissue Engineering, Biomacromolecules, vol.15, issue.4, pp.1115-1138, 2014.
DOI : 10.1021/bm4018963

E. Mathieu, G. Lamirault, C. Toquet, P. Lhommet, E. Rederstorff et al., Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction, PLoS ONE, vol.102, issue.12, p.51991, 2012.
DOI : 10.1371/journal.pone.0051991.t002

URL : https://hal.archives-ouvertes.fr/inserm-00770250

L. Visage, C. Gournay, O. Benguirat, N. Hamidi, S. Chaussumier et al., Mesenchymal Stem Cell Delivery into Rat Infarcted Myocardium Using a Porous Polysaccharide-Based Scaffold: A Quantitative Comparison With Endocardial Injection, Tissue Engineering Part A, vol.18, issue.1-2, pp.35-44, 2012.
DOI : 10.1089/ten.tea.2011.0053

URL : https://hal.archives-ouvertes.fr/inserm-00613948

S. Shin, S. Jung, M. Zalabany, K. Kim, P. Zorlutuna et al., Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators, ACS Nano, vol.7, issue.3, pp.2369-80, 2013.
DOI : 10.1021/nn305559j

URL : http://europepmc.org/articles/pmc3609875?pdf=render

C. Colosi, S. Shin, V. Manoharan, S. Massa, M. Costantini et al., Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink, Advanced Materials, vol.15, issue.4, pp.677-84, 2016.
DOI : 10.1016/0167-5699(94)90195-3

URL : http://europepmc.org/articles/pmc4804470?pdf=render

P. Menasché, V. Vanneaux, A. Hagège, A. Bel, B. Cholley et al., Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment

K. Flégeau, Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine, Advances in Colloid and Interface Science, vol.247, pp.589-609, 2017.
DOI : 10.1016/j.cis.2017.07.012

, Eur Heart J, vol.36, issue.30, pp.2011-2018, 2015.

J. Bernhard and G. Vunjak-novakovic, Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?, Stem Cell Research & Therapy, vol.10, issue.7-8, p.56, 2016.
DOI : 10.1089/ten.2004.10.1169

I. Liao, F. Moutos, B. Estes, X. Zhao, and F. Guilak, Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage, Advanced Functional Materials, vol.31, issue.47, pp.5833-5842, 2013.
DOI : 10.1016/S0021-9290(98)00035-9

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation, New England Journal of Medicine, vol.331, issue.14, pp.889-95, 1994.
DOI : 10.1056/NEJM199410063311401

E. Makris, A. Gomoll, K. Malizos, J. Hu, and K. Athanasiou, Repair and tissue engineering techniques for articular cartilage, Nature Reviews Rheumatology, vol.91, issue.1, 2015.
DOI : 10.1177/0363546511422220

S. Fox, A. Bedi, A. Rodeo, and S. , The Basic Science of Articular Cartilage, Sports Health, vol.1, issue.6, pp.461-469, 2009.

C. Vinatier, C. Bouffi, C. Merceron, J. Gordeladze, J. Brondello et al., Cartilage Tissue Engineering: Towards a Biomaterial-Assisted Mesenchymal Stem Cell Therapy, Current Stem Cell Research & Therapy, vol.4, issue.4, pp.318-347, 2009.
DOI : 10.2174/157488809789649205

URL : https://hal.archives-ouvertes.fr/inserm-00423696

C. Vinatier and J. Guicheux, Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments, Annals of Physical and Rehabilitation Medicine, vol.59, issue.3, pp.139-183, 2016.
DOI : 10.1016/j.rehab.2016.03.002

URL : https://hal.archives-ouvertes.fr/inserm-01586938

S. Portron, C. Merceron, O. Gauthier, J. Lesoeur, S. Sourice et al., Effects of In Vitro Low Oxygen Tension Preconditioning of Adipose Stromal Cells on Their In Vivo Chondrogenic Potential: Application in Cartilage Tissue Repair, PLoS ONE, vol.281, issue.4, p.62368, 2013.
DOI : 10.1371/journal.pone.0062368.t002

URL : https://hal.archives-ouvertes.fr/inserm-01847981

M. Mumme, A. Barbero, S. Miot, A. Wixmerten, S. Feliciano et al., Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial, The Lancet, vol.388, issue.10055, pp.1985-94, 2016.
DOI : 10.1016/S0140-6736(16)31658-0

J. Visser, F. Melchels, J. Jeon, E. Van-bussel, L. Kimpton et al., Reinforcement of hydrogels using three-dimensionally printed microfibres, Nature Communications, vol.33, issue.1, p.6933, 2015.
DOI : 10.5405/jmbe.1254

URL : http://www.nature.com/articles/ncomms7933.pdf

K. Koss and L. Unsworth, Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides, Acta Biomaterialia, vol.44, pp.2-15, 2016.
DOI : 10.1016/j.actbio.2016.08.026

Z. Khaing, R. Thomas, S. Geissler, and C. Schmidt, Advanced biomaterials for repairing the nervous system: what can hydrogels do for the brain?, Materials Today, vol.17, issue.7, pp.332-372, 2014.
DOI : 10.1016/j.mattod.2014.05.011

URL : https://doi.org/10.1016/j.mattod.2014.05.011

M. Harting, L. Sloan, F. Jimenez, J. Baumgartner, and C. Cox, Subacute Neural Stem Cell Therapy for Traumatic Brain Injury, Journal of Surgical Research, vol.153, issue.2, pp.188-94, 2009.
DOI : 10.1016/j.jss.2008.03.037

URL : http://europepmc.org/articles/pmc2874889?pdf=render

D. Nisbet, K. Crompton, M. Horne, D. Finkelstein, and J. Forsythe, Neural tissue engineering of the CNS using hydrogels, J Biomed Mater Res B Appl Biomater, vol.87, issue.1, pp.251-63, 2008.

D. Cook, C. Nguyen, H. Chun, I. Llorente, A. Chiu et al., Hydrogeldelivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke, J Cereb Blood Flow Metab, 2016.
DOI : 10.1177/0271678x16649964

URL : http://europepmc.org/articles/pmc5363479?pdf=render

B. Ballios, M. Cooke, L. Donaldson, B. Coles, C. Morshead et al., A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation, Stem Cell Reports, vol.4, issue.6, 2015.
DOI : 10.1016/j.stemcr.2015.04.008

, Jun, vol.94, issue.6, pp.1031-1076

S. Kandalam, L. Sindji, G. Delcroix, F. Violet, X. Garric et al., Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement, Acta Biomaterialia, vol.49, pp.167-80, 2017.
DOI : 10.1016/j.actbio.2016.11.030

URL : https://hal.archives-ouvertes.fr/inserm-01845036

C. Yang, Y. Shih, M. Ko, S. Hsu, H. Cheng et al., Transplantation of Human Umbilical Mesenchymal Stem Cells from Wharton's Jelly after Complete Transection of the Rat Spinal Cord, PLoS ONE, vol.19, issue.12, 2008.
DOI : 10.1371/journal.pone.0003336.s002

, Available from, 2566594-11-24.

J. Henkel, M. Woodruff, D. Epari, R. Steck, V. Glatt et al., Bone Regeneration Based on Tissue Engineering Conceptions ??? A 21st Century Perspective, Bone Research, vol.2013, issue.3, pp.216-264, 2013.
DOI : 10.1155/2013/153640

G. Calori, W. Albisetti, A. Agus, S. Iori, and L. Tagliabue, Risk factors contributing to fracture non-unions, Injury, vol.38, issue.2, pp.11-19, 2007.
DOI : 10.1016/S0020-1383(07)80004-0

O. Jeon and J. Elisseeff, Orthopedic tissue regeneration: cells, scaffolds, and small molecules, Drug Delivery and Translational Research, vol.16, issue.2, pp.105-125, 2015.
DOI : 10.22203/eCM.v016a02

D. Gibbs, C. Black, J. Dawson, and R. Oreffo, A review of hydrogel use in fracture healing and bone regeneration, Journal of Tissue Engineering and Regenerative Medicine, vol.32, issue.suppl 2, pp.187-98, 2016.
DOI : 10.1016/j.biomaterials.2011.08.047

K. Minier, A. Touré, M. Fusellier, B. Fellah, B. Bouvy et al., BMP-2 delivered from a self-crosslinkable CaP/hydrogel construct promotes bone regeneration in a critical-size segmental defect model of non-union in dogs, Vet Comp Orthop Traumatol VCOT, vol.27, issue.6, pp.411-432, 2014.

B. Fellah, P. Weiss, O. Gauthier, T. Rouillon, P. Pilet et al., Bone repair using a new injectable self-crosslinkable bone substitute, Journal of Orthopaedic Research, vol.254, issue.4, pp.628-663, 2006.
DOI : 10.1159/000419232

URL : https://hal.archives-ouvertes.fr/inserm-00170238

S. Wechsler, D. Fehr, A. Molenberg, G. Raeber, J. Schense et al., A novel, tissue occlusive poly(ethylene glycol) hydrogel material, Journal of Biomedical Materials Research Part A, vol.31, issue.2, pp.285-92, 2008.
DOI : 10.1021/bk-1997-0680.ch004

X. Struillou, H. Boutigny, Z. Badran, B. Fellah, O. Gauthier et al., Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate, Journal of Materials Science: Materials in Medicine, vol.28, issue.6, pp.1707-1724, 2011.
DOI : 10.1016/j.biomaterials.2006.10.015

S. Wu, X. Liu, K. Yeung, C. Liu, and X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Materials Science and Engineering: R: Reports, vol.80, pp.1-36, 2014.
DOI : 10.1016/j.mser.2014.04.001

A. Neffe, B. Pierce, G. Tronci, N. Ma, E. Pittermann et al., One Step Creation of Multifunctional 3D Architectured Hydrogels Inducing Bone Regeneration, Advanced Materials, vol.131, issue.10, pp.1738-1782, 2015.
DOI : 10.1007/s00402-010-1155-7

URL : http://onlinelibrary.wiley.com/doi/10.1002/adma.201404787/pdf

L. Da-silva, R. Pirraco, T. Santos, R. Novoa-carballal, M. Cerqueira et al., Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products, ACS Applied Materials & Interfaces, vol.8, issue.49, 2016.
DOI : 10.1021/acsami.6b11684

A. Tocchio, M. Tamplenizza, F. Martello, I. Gerges, E. Rossi et al., Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor, Biomaterials, vol.45, pp.124-155, 2015.
DOI : 10.1016/j.biomaterials.2014.12.031

D. Tang, R. Tare, L. Yang, D. Williams, K. Ou et al., Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration, Biomaterials, vol.83, pp.363-82, 2016.
DOI : 10.1016/j.biomaterials.2016.01.024

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. Doudna et al., A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.274, issue.45, pp.816-837, 2012.
DOI : 10.1074/jbc.274.45.31896

URL : https://zenodo.org/record/1230922/files/article.pdf

N. Huebsch, E. Lippens, K. Lee, M. Mehta, S. Koshy et al., Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone??formation, Nature Materials, vol.24, issue.12, pp.1269-77, 2015.
DOI : 10.22203/eCM.v024a26

URL : http://europepmc.org/articles/pmc4654683?pdf=render

J. Zhang, W. Liu, O. Gauthier, S. Sourice, P. Pilet et al., A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution, Acta Biomaterialia, vol.31, pp.326-364, 2016.
DOI : 10.1016/j.actbio.2015.11.055

URL : https://hal.archives-ouvertes.fr/hal-01723572

T. Wang, X. Jiang, Q. Tang, X. Li, T. Lin et al., Bone marrow stem cells implantation with ??-cyclodextrin/MPEG???PCL???MPEG hydrogel improves cardiac function after myocardial infarction, Acta Biomaterialia, vol.5, issue.8, pp.2939-2983, 2009.
DOI : 10.1016/j.actbio.2009.04.040

C. Chen, M. Chang, S. Wang, and P. Hsieh, Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs, American Journal of Physiology-Heart and Circulatory Physiology, vol.306, issue.7, pp.1078-86, 2014.
DOI : 10.1172/JCI200522326

J. Ifkovits, E. Tous, M. Minakawa, M. Morita, J. Robb et al., Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model, Proceedings of the National Academy of Sciences, vol.48, issue.6, 2010.
DOI : 10.1016/0003-4975(89)90682-6

, Jun, vol.22107, issue.25, pp.11507-11519

H. Sabbah, M. Wang, R. Gupta, S. Rastogi, I. Ilsar et al., Augmentation of Left Ventricular Wall Thickness With Alginate Hydrogel Implants Improves Left Ventricular Function and Prevents Progressive Remodeling in Dogs With Chronic Heart Failure, JACC: Heart Failure, vol.1, issue.3, pp.252-260, 2013.
DOI : 10.1016/j.jchf.2013.02.006

, A Study of VentriGel in Early and Late Post-myocardial Infarction Patients -Full Text View -ClinicalTrials.gov Internet Available from: https://clinicaltrials, 2016.

J. Lee and G. Im, SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat, Biomaterials, vol.33, issue.7, pp.2016-2040, 2012.
DOI : 10.1016/j.biomaterials.2011.11.050

C. Mierisch, S. Cohen, L. Jordan, P. Robertson, G. Balian et al., Transforming growth factor-?? in calcium alginate beads for the treatment of articular cartilage defects in the rabbit, Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol.18, issue.8, pp.892-900, 2002.
DOI : 10.1053/jars.2002.36117

E. Filová, M. Rampichová, M. Handl, A. Lytvynets, R. Halouzka et al., Composite hyaluronate-type I collagen-fibrin scaffold in the therapy of osteochondral defects in miniature pigs, Physiol Res, vol.56, issue.1, pp.5-16, 2007.

J. Schagemann, C. Erggelet, H. Chung, A. Lahm, H. Kurz et al., Cell-Laden and Cell-Free Biopolymer Hydrogel for the Treatment of Osteochondral Defects in a Sheep Model, Tissue Engineering Part A, vol.15, issue.1, pp.75-82, 2009.
DOI : 10.1089/ten.tea.2008.0087

M. Lind, A. Larsen, C. Clausen, K. Osther, and H. Everland, Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats, Knee Surgery, Sports Traumatology, Arthroscopy, vol.23, issue.7, pp.690-698, 2008.
DOI : 10.1159/000147272

K. Yamazoe, H. Mishima, K. Torigoe, H. Iijima, K. Watanabe et al., Effects of Atelocollagen Gel Containing Bone Marrow-Derived Stromal Cells on Repair of Osteochondral Defect in a Dog, Journal of Veterinary Medical Science, vol.69, issue.8, pp.835-844, 2007.
DOI : 10.1292/jvms.69.835

D. Hendrickson, A. Nixon, D. Grande, R. Todhunter, R. Minor et al.,

, Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects, J Orthop Res Off Publ Orthop Res Soc, vol.12, issue.4, pp.485-97, 1994.

S. Araki, S. Imai, H. Ishigaki, T. Mimura, K. Nishizawa et al., Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model, Acta Orthopaedica, vol.75, issue.1, 2015.
DOI : 10.1177/0363546510365296

, Feb, vol.86, issue.1, pp.119-145

B. Sharma, S. Fermanian, M. Gibson, S. Unterman, D. Herzka et al., Human Cartilage Repair with a Photoreactive Adhesive-Hydrogel Composite, Science Translational Medicine, vol.7, issue.1, pp.167-173, 2009.
DOI : 10.1557/JMR.1992.1564

, ChonDux for Filling Full Thickness Cartilage Defects in the Femoral Condyle of the Knee -Full Text View -ClinicalTrials.gov [Internet]. [cited 2017 Feb 24]. Available from:https://clinicaltrials.gov, 1110070.

G. Novel, Acellular Treatment for Cartilage Lesions on the Femoral Condyle [Internet] Available from, 2016.

, BST-Cargel -Bioscaffold technology, enhancing cartilage regeneration, microfracture & mosiacplasty | Smith & Nephew -Corporate -[Internet] cited 2017 Feb 15 Available from: http://www.smith-nephew.com/key-products/sports- medicine/bst-cargel

. Arthro-kinetics, Product information CaReS-1S | Arthro-Kinetics [Internet] Available from, p.1, 2010.

T. Nakaji-hirabayashi, K. Kato, and H. Iwata, Study on the Survival of Neural Stem Cells Transplanted into the Rat Brain with a Collagen Hydrogel That Incorporates Laminin-Derived Polypeptides, Bioconjugate Chemistry, vol.24, issue.11, pp.1798-804, 2013.
DOI : 10.1021/bc400005m

S. Dhivya, S. Saravanan, T. Sastry, and N. Selvamurugan, Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo, Journal of Nanobiotechnology, vol.229, issue.1, p.40, 2015.
DOI : 10.1002/jcp.24557

T. Holland, E. Bodde, L. Baggett, Y. Tabata, A. Mikos et al., Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo K, Flégeau et al. Advances in Colloid and Interface Science, vol.247, pp.589-609, 2017.

, poly(ethylene glycol) fumarate) hydrogel scaffolds, J Biomed Mater Res A, 2005.

, Oct, vol.175, issue.1, pp.156-67

M. Fisher, N. Belkin, A. Milby, E. Henning, M. Bostrom et al., Cartilage Repair and Subchondral Bone Remodeling in Response to Focal Lesions in a Mini-Pig Model: Implications for Tissue Engineering, Tissue Engineering Part A, vol.21, issue.3-4, 2015.
DOI : 10.1089/ten.tea.2014.0384

. Feb, , pp.3-4850

K. Haberstroh, K. Ritter, J. Kuschnierz, K. Bormann, C. Kaps et al., Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.28, issue.2, pp.520-550, 2010.
DOI : 10.1016/j.biomaterials.2006.08.024

E. Lippens, G. Vertenten, J. Gironès, H. Declercq, J. Saunders et al., F127 Hydrogel Derivative Combined with Autologous Mesenchymal Stem Cells in a Goat Tibia Defect Model, Tissue Engineering Part A, vol.16, issue.2, pp.617-644, 2009.
DOI : 10.1089/ten.tea.2009.0418

J. Cohen, L. Southwood, J. Engiles, M. Leitch, and D. Nunamaker, Effects of a novel hydrogel on equine bone healing: A pilot study, Veterinary and Comparative Orthopaedics and Traumatology, vol.25, issue.3, pp.184-91, 2012.
DOI : 10.3415/VCOT-11-01-0006

Y. Takahashi, M. Yamamoto, K. Yamada, O. Kawakami, and Y. Tabata, Skull Bone Regeneration in Nonhuman Primates by Controlled Release of Bone Morphogenetic Protein-2 from a Biodegradable Hydrogel, Tissue Engineering, vol.13, issue.2, pp.293-300, 2007.
DOI : 10.1089/ten.2006.0088

R. Jung, G. Hälg, D. Thoma, and C. Hämmerle, A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants, Clinical Oral Implants Research, vol.16, issue.2, pp.162-170, 2009.
DOI : 10.1002/jbm.a.31477

M. Song, H. Jang, J. Lee, J. Kim, S. Kim et al., Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP, Biomaterials, vol.35, issue.8, pp.2436-2481, 2014.
DOI : 10.1016/j.biomaterials.2013.12.011

, Design of biopolymer-based 3D scaffolds for cardiac mesenchymal stem cell therapy [Internet] [cited Available from, Frontiers, 2016.

A. Rufaihah, N. Johari, S. Vaibavi, M. Plotkin, D. Thien et al., Dual delivery of VEGF and ANG-1 in ischemic hearts using an injectable hydrogel, Acta Biomaterialia, vol.48, 2016.
DOI : 10.1016/j.actbio.2016.10.013

J. Karam, C. Muscari, L. Sindji, G. Bastiat, F. Bonafè et al., Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering, Journal of Controlled Release, vol.192, pp.82-94, 2014.
DOI : 10.1016/j.jconrel.2014.06.052

S. Zhao, Z. Xu, H. Wang, B. Reese, L. Gushchina et al., Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction Available from, Nat Commun, vol.7, 2016.

H. Wang, J. Shi, Y. Wang, Y. Yin, L. Wang et al., Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction, Biomaterials, vol.35, issue.13, pp.3986-98, 2014.
DOI : 10.1016/j.biomaterials.2014.01.021

F. Yu, X. Cao, Y. Li, L. Zeng, B. Yuan et al., An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels???Alder ???click chemistry???, Polymer Chemistry, vol.32, issue.3, pp.1082-90, 2014.
DOI : 10.1023/B:ABME.0000017535.00602.ca

A. Mellati, M. Kiamahalleh, S. Madani, S. Dai, J. Bi et al., -isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering, Journal of Biomedical Materials Research Part A, vol.9, issue.11, pp.2764-74, 2016.
DOI : 10.1088/1748-6041/9/3/035008

N. Luciani, V. Du, F. Gazeau, A. Richert, D. Letourneur et al., Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation, Acta Biomaterialia, vol.37, pp.101-111, 2016.
DOI : 10.1016/j.actbio.2016.04.009

URL : https://hal.archives-ouvertes.fr/hal-01519129

F. Chen, S. Yu, B. Liu, Y. Ni, C. Yu et al., An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for, Cartilage Tissue Engineering. Sci Rep, vol.6, 2016.

W. Pustlauk, B. Paul, M. Gelinsky, and A. Bernhardt, Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC, Materials Science and Engineering: C, vol.64, pp.190-198, 2016.
DOI : 10.1016/j.msec.2016.03.081

K. Ren, C. He, C. Xiao, G. Li, and X. Chen, Injectable glycopolypeptide hydrogels as biomimetic scaffolds for??cartilage tissue engineering, Biomaterials, vol.51, pp.238-287, 2015.
DOI : 10.1016/j.biomaterials.2015.02.026

N. Yin, M. Stilwell, T. Santos, H. Wang, and D. Weibel, Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro, Acta Biomaterialia, vol.12, pp.129-167, 2015.
DOI : 10.1016/j.actbio.2014.10.019

L. Cao, B. Cao, C. Lu, G. Wang, L. Yu et al., An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering, Journal of Materials Chemistry B, vol.6, issue.7, pp.1268-80, 2015.
DOI : 10.1039/b926890a

P. Guo, Y. Yuan, and C. F. , Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis, Materials Science and Engineering: C, vol.42, pp.622-630, 2014.
DOI : 10.1016/j.msec.2014.06.013

L. Wang, C. Du, W. Toh, A. Wan, S. Gao et al., Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel??with tunable mechanical properties, Biomaterials, vol.35, issue.7, pp.2207-2224, 2014.
DOI : 10.1016/j.biomaterials.2013.11.070

C. Needham, S. Shah, R. Dahlin, L. Kinard, J. Lam et al., Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2, Acta Biomaterialia, vol.10, issue.10, pp.4103-4115, 2014.
DOI : 10.1016/j.actbio.2014.05.011

E. Popa, S. Caridade, J. Mano, R. Reis, and M. Gomes, -carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications, Journal of Tissue Engineering and Regenerative Medicine, vol.13, issue.12, 2015.
DOI : 10.1091/mbc.E02-02-0105

M. Du, H. Liang, C. Mou, X. Li, J. Sun et al., Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds, Colloids and Surfaces B: Biointerfaces, vol.114, pp.316-339, 2014.
DOI : 10.1016/j.colsurfb.2013.10.001

C. Vinatier, O. Gauthier, A. Fatimi, C. Merceron, M. Masson et al., An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects, Biotechnology and Bioengineering, vol.358, issue.Pt 1, pp.1259-67, 2009.
DOI : 10.1002/jbm.a.30867

B. Mintz and J. Cooper, Hybrid hyaluronic acid hydrogel/poly(??-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies, Journal of Biomedical Materials Research Part A, vol.87, issue.9, pp.2918-2944, 2014.
DOI : 10.1302/0301-620X.87B8.15083

I. Caron, F. Rossi, S. Papa, R. Aloe, M. Sculco et al., A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury, Biomaterials, vol.75, pp.135-182, 2016.
DOI : 10.1016/j.biomaterials.2015.10.024

X. Feng, X. Lu, D. Huang, J. Xing, G. Feng et al., 3D Porous Chitosan Scaffolds Suit Survival and Neural Differentiation of Dental Pulp Stem Cells, 3D Porous Chitosan Scaffolds Suit Survival and Neural Differentiation of Dental Pulp Stem Cells, pp.859-70, 2014.
DOI : 10.1161/STROKEAHA.112.676759

A. Mothe, R. Tam, T. Zahir, C. Tator, and M. Shoichet, Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel, Biomaterials, vol.34, issue.15, pp.3775-83, 2013.
DOI : 10.1016/j.biomaterials.2013.02.002

T. Führmann, J. Obermeyer, C. Tator, and M. Shoichet, Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord, Methods, vol.84, pp.60-69, 2015.
DOI : 10.1016/j.ymeth.2015.03.023

Y. Liang, P. Walczak, and J. Bulte, The survival of engrafted neural stem cells within hyaluronic acid hydrogels, Biomaterials, vol.34, issue.22, pp.5521-5530, 2013.
DOI : 10.1016/j.biomaterials.2013.03.095

URL : http://europepmc.org/articles/pmc3653424?pdf=render

M. Berndt, Y. Li, N. Seyedhassantehrani, and L. Yao, Fabrication and Characterization of Microspheres Encapsulating Astrocytes for Neural Regeneration, ACS Biomaterials Science & Engineering, vol.3, issue.7, 2016.
DOI : 10.1021/acsbiomaterials.6b00229

S. Lindsey, J. Piatt, P. Worthington, C. Sönmez, S. Satheye et al., Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery, Biomacromolecules, vol.16, issue.9, pp.2672-83, 2015.
DOI : 10.1021/acs.biomac.5b00541

URL : http://europepmc.org/articles/pmc4873771?pdf=render

T. Fourniols, L. Randolph, A. Staub, K. Vanvarenberg, J. Leprince et al., Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma, Journal of Controlled Release, vol.210, pp.95-104, 2015.
DOI : 10.1016/j.jconrel.2015.05.272

T. Tseng, L. Tao, F. Hsieh, Y. Wei, I. Chiu et al., An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System, Advanced Materials, vol.109, issue.23, pp.3518-3542, 2015.
DOI : 10.1016/B978-0-12-420045-6.00001-8

Z. Wei, J. Zhao, Y. Chen, P. Zhang, and Q. Zhang, Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Sci Rep, p.37841, 2016.
DOI : 10.1038/srep37841

URL : http://www.nature.com/articles/srep37841.pdf

Y. Maazouz, E. Montufar, J. Malbert, M. Espanol, and M. Ginebra, Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes, Acta Biomaterialia, vol.49, 2016.
DOI : 10.1016/j.actbio.2016.11.043

Q. Feng, K. Wei, S. Lin, Z. Xu, Y. Sun et al., Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration, Biomaterials, vol.101, pp.217-245, 2016.
DOI : 10.1016/j.biomaterials.2016.05.043

S. Young, Z. Patel, J. Kretlow, M. Murphy, P. Mountziaris et al., Dose Effect of Dual Delivery of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein-2 on Bone Regeneration in a Rat Critical-Size Defect Model, Tissue Engineering Part A, vol.15, issue.9, pp.2347-62, 2009.
DOI : 10.1089/ten.tea.2008.0510

A. Moshaverinia, C. Chen, K. Akiyama, X. Xu, W. Chee et al., Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering, Journal of Biomedical Materials Research Part A, vol.261, issue.11, pp.3285-94, 2013.
DOI : 10.1126/science.261.5126.1286

D. Cardoso, J. Van-den-beucken, L. Both, J. Bender, J. Jansen et al., Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration, J Biomed Mater Res A, 2014.

. Amrita, A. Arora, P. Sharma, and D. Katti, Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization, Carbohydrate Polymers, vol.123, pp.180-189, 2015.
DOI : 10.1016/j.carbpol.2015.01.038

C. Trojani, F. Boukhechba, J. Scimeca, F. Vandenbos, J. Michiels et al., Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells, Biomaterials, vol.27, issue.17, pp.3256-64, 2006.
DOI : 10.1016/j.biomaterials.2006.01.057

URL : https://hal.archives-ouvertes.fr/inserm-00110459

P. Lohmann, A. Willuweit, A. Neffe, S. Geisler, T. Gebauer et al., Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect, Biomaterials, vol.113, pp.158-69, 2017.
DOI : 10.1016/j.biomaterials.2016.10.039

J. Jang, S. Park, J. Park, B. Lee, J. Yun et al., In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel, Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel, pp.1158-69, 2016.
DOI : 10.1016/0092-8674(81)90037-4

A. Raic, L. Rödling, H. Kalbacher, and C. Lee-thedieck, Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells, Biomaterials, vol.35, issue.3, pp.929-969, 2014.
DOI : 10.1016/j.biomaterials.2013.10.038

J. Luckanagul, L. Lee, Q. Nguyen, P. Sitasuwan, X. Yang et al., Porous Alginate Hydrogel Functionalized with Virus as Three-Dimensional Scaffolds for Bone Differentiation, Biomacromolecules, vol.13, issue.12, pp.3949-58, 2012.
DOI : 10.1021/bm301180c

K. Flégeau, Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine, Advances in Colloid and Interface Science, vol.247, pp.589-609, 2017.
DOI : 10.1016/j.cis.2017.07.012