A. Grochot-przeczek, J. Dulak, and A. Jozkowicz, Therapeutic angiogenesis for revascularization in peripheral artery disease, Gene, vol.525, issue.2, pp.220-228, 2013.
DOI : 10.1016/j.gene.2013.03.097

D. F. Lazarous, Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial, Journal of the American College of Cardiology, vol.36, issue.4, pp.1239-1244, 2000.
DOI : 10.1016/S0735-1097(00)00882-2

L. T. Cooper and . Jr, Proteinuria in a placebo-controlled study of basic fibroblast growth factor for intermittent claudication, Vascular Medicine, vol.35, issue.4, pp.235-239, 2001.
DOI : 10.1016/S0735-1097(00)00988-8

R. J. Lederman, Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomized trial, ACC Current Journal Review, vol.11, issue.6, pp.2053-2058, 2002.
DOI : 10.1016/S1062-1458(02)00973-X

J. Yamaguchi, Stromal Cell-Derived Factor-1 Effects on Ex Vivo Expanded Endothelial Progenitor Cell Recruitment for Ischemic Neovascularization, Circulation, vol.107, issue.9, pp.1322-1328, 2003.
DOI : 10.1161/01.CIR.0000055313.77510.22

URL : http://circ.ahajournals.org/content/circulationaha/107/9/1322.full.pdf

S. Matoba, Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia, American Heart Journal, vol.156, issue.5, pp.1010-1018, 2008.
DOI : 10.1016/j.ahj.2008.06.025

P. K. Shireman, V. Contreras-shannon, S. M. Reyes-reyna, S. C. Robinson, and L. M. Mcmanus, MCP-1 Parallels Inflammatory and Regenerative Responses in Ischemic Muscle, Journal of Surgical Research, vol.134, issue.1, pp.145-157, 2006.
DOI : 10.1016/j.jss.2005.12.003

M. Takahashi, Role of the SDF-1/CXCR4 System in Myocardial Infarction, Circulation Journal, vol.74, issue.3, pp.418-423, 2010.
DOI : 10.1253/circj.CJ-09-1021

H. Slimani, Binding of the CC-chemokine RANTES to syndecan-1 and syndecan-4 expressed on HeLa cells, Glycobiology, vol.13, issue.9, pp.623-634, 2003.
DOI : 10.1093/glycob/cwg083

URL : https://academic.oup.com/glycob/article-pdf/13/9/623/1768182/cwg083.pdf

, Scientific RepoRts | 7: 13294 | DOI:10, pp.41598-41615, 1038.

H. Slimani, Interaction of RANTES with syndecan-1 and syndecan-4 expressed by human primary macrophages, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1617, issue.1-2, pp.80-88, 2003.
DOI : 10.1016/j.bbamem.2003.09.006

F. Charni, Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.10, pp.1314-1326, 2009.
DOI : 10.1016/j.bbagen.2009.07.015

N. Suffee, RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans, Angiogenesis, vol.276, issue.25, pp.727-744, 2012.
DOI : 10.1074/jbc.M010867200

A. Sutton, Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells, Molecular Cancer Therapeutics, vol.6, issue.11, pp.2948-2958, 2007.
DOI : 10.1158/1535-7163.MCT-07-0114

URL : https://hal.archives-ouvertes.fr/hal-00195453

J. T. Parissis, Serum Profiles of C-C Chemokines in Acute Myocardial Infarction: Possible Implication in Postinfarction Left Ventricular Remodeling, Journal of Interferon & Cytokine Research, vol.22, issue.2, pp.223-229, 2002.
DOI : 10.1089/107999002753536194

N. R. Veillard, Antagonism of RANTES Receptors Reduces Atherosclerotic Plaque Formation in Mice, Circulation Research, vol.94, issue.2, pp.253-261, 2004.
DOI : 10.1161/01.RES.0000109793.17591.4E

G. T. Liu, CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells, Cancer Letters, vol.357, issue.2, pp.476-87, 2015.
DOI : 10.1016/j.canlet.2014.11.015

S. W. Wang, CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment, Carcinogenesis, vol.98, issue.1, pp.104-118, 2015.
DOI : 10.1111/j.1349-7006.2007.00535.x

G. T. Liu, CCL5 promotes VEGF-dependent angiogenesisby down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells, Oncotarget, vol.5, pp.10718-10749, 2014.

L. Laterveer, Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8, Blood, vol.87, pp.781-788, 1996.

S. Prokoph, Sustained delivery of SDF-1?? from heparin-based hydrogels to attract circulating pro-angiogenic cells, Biomaterials, vol.33, issue.19, pp.4792-4800, 2012.
DOI : 10.1016/j.biomaterials.2012.03.039

A. Autissier, L. Visage, C. Pouzet, C. Chaubet, F. Letourneur et al., Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process, Acta Biomaterialia, vol.6, issue.9, pp.3640-3648, 2010.
DOI : 10.1016/j.actbio.2010.03.004

S. M. Derkaoui, Films of dextran-graft-polybutylmethacrylate to enhance endothelialization of materials, Acta Biomaterialia, vol.6, issue.9, pp.3506-3519, 2010.
DOI : 10.1016/j.actbio.2010.03.043

M. Lavergne, Porous Polysaccharide-Based Scaffolds for Human Endothelial Progenitor Cells, Macromolecular Bioscience, vol.9, issue.7, pp.901-911, 2012.
DOI : 10.1038/nm0603-653

L. Visage and C. , Mesenchymal Stem Cell Delivery into Rat Infarcted Myocardium Using a Porous Polysaccharide-Based Scaffold: A Quantitative Comparison With Endocardial Injection, Tissue Engineering Part A, vol.18, issue.1-2, pp.35-44, 2012.
DOI : 10.1089/ten.tea.2011.0053

URL : https://hal.archives-ouvertes.fr/inserm-00613948

A. Purnama, Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Delivery and Translational Research, vol.32, issue.1, pp.187-97, 2015.
DOI : 10.1042/BSR20110077

S. Nakamura, Attenuation of Limb Loss in an Experimentally Induced Hindlimb Ischemic Model by Fibroblast Growth Factor-2/Fragmin/Protamine Microparticles as a Delivery System, Tissue Engineering Part A, vol.18, issue.21-22, pp.2239-2247, 2012.
DOI : 10.1089/ten.tea.2011.0741

R. Wang, Apolipoprotein (a) Impairs Endothelial Progenitor Cell-Mediated Angiogenesis, DNA and Cell Biology, vol.32, issue.5, pp.243-251, 2013.
DOI : 10.1089/dna.2013.1963

F. Chevalier, A fine structural modification of glycosaminoglycans is correlated with the progression of muscle regeneration after ischaemia: towards a matrix-based therapy?, European Cells and Materials, vol.30, pp.51-68, 2015.
DOI : 10.22203/eCM.v030a05

G. Zaccagnini, Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia, PLOS ONE, vol.9, issue.2, p.142111, 2015.
DOI : 10.1371/journal.pone.0142111.s005

M. D. Grounds, H. Radley, G. S. Lynch, K. Nagaraju, and A. De-luca, Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy, Neurobiology of Disease, vol.31, issue.1, pp.1-19, 2008.
DOI : 10.1016/j.nbd.2008.03.008

D. Scholz, S. Thomas, S. Sass, and T. Podzuweit, Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration, Mol Cell Biochem, vol.246, pp.57-67, 2003.
DOI : 10.1007/978-1-4615-0298-2_9

G. Bernardini, Analysis of the role of chemokines in angiogenesis, Journal of Immunological Methods, vol.273, issue.1-2, pp.83-101, 2002.
DOI : 10.1016/S0022-1759(02)00420-9

D. Falco and E. , SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells, Blood, vol.104, issue.12, pp.3472-3482, 2004.
DOI : 10.1182/blood-2003-12-4423

F. Zemani, Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells, Biochemical Pharmacology, vol.70, issue.8, pp.1167-1175, 2005.
DOI : 10.1016/j.bcp.2005.07.014

L. E. Sidney, M. J. Branch, S. E. Dunphy, H. S. Dua, and A. Hopkinson, Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors, STEM CELLS, vol.15, issue.Pt 2, pp.1380-1389, 2014.
DOI : 10.1007/s10456-011-9251-z

. Formiga, Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia???reperfusion model, Journal of Controlled Release, vol.147, issue.1, pp.30-37, 2010.
DOI : 10.1016/j.jconrel.2010.07.097

P. H. Kim, Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization, Journal of Controlled Release, vol.187, pp.1-13, 2014.
DOI : 10.1016/j.jconrel.2014.05.010

E. M. Anderson, Local Delivery of VEGF and SDF Enhances Endothelial Progenitor Cell Recruitment and Resultant Recovery from Ischemia, Tissue Engineering Part A, vol.21, issue.7-8, 2015.
DOI : 10.1089/ten.tea.2014.0508

N. Suffee, Angiogenic properties of the chemokine RANTES/CCL5, Biochemical Society Transactions, vol.99, issue.6, pp.1649-53, 2011.
DOI : 10.1016/j.molimm.2009.05.015

URL : https://hal.archives-ouvertes.fr/hal-02067500

L. S. Barcelos, A. M. Coelho, and R. C. Russo, Role of the chemokines CCL3/MIP-1?? and CCL5/RANTES in sponge-induced inflammatory angiogenesis in mice, Microvascular Research, vol.78, issue.2, pp.148-54, 2009.
DOI : 10.1016/j.mvr.2009.04.009

C. Cochain, Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization, Cardiovascular Research, vol.172, issue.7, pp.186-95, 2010.
DOI : 10.4049/jimmunol.172.7.4410

P. E. Westerweel, T. J. Rabelink, M. B. Rookmaaker, H. J. Gröne, and M. C. Verhaar, RANTES is required for ischaemia-induced angiogenesis, which may hamper RANTES-targeted anti-atherosclerotic therapy, Thrombosis and Haemostasis, vol.99, issue.04, pp.794-799, 2008.
DOI : 10.1160/TH07-10-0628

B. K. Ambati, Sustained Inhibition of Corneal Neovascularization by Genetic Ablation of CCR5, Investigative Opthalmology & Visual Science, vol.44, issue.2, pp.590-593, 2003.
DOI : 10.1167/iovs.02-0685

P. O. Rujitanaroj, Polysaccharide electrospun fibers with sulfated poly(fucose) promote endothelial cell migration and VEGF-mediated angiogenesis, Biomater. Sci., vol.17, issue.2, pp.843-852, 2014.
DOI : 10.1111/j.1524-475X.2009.00466.x

T. Miller, M. C. Goude, T. C. Mcdevitt, and J. S. Temenoff, Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery, Acta Biomaterialia, vol.10, issue.4, pp.1705-1724, 2014.
DOI : 10.1016/j.actbio.2013.09.039

P. K. Shireman, The chemokine system in arteriogenesis and hind limb ischemia, Journal of Vascular Surgery, vol.45, issue.6, pp.48-56, 2007.
DOI : 10.1016/j.jvs.2007.02.030

J. G. Tidball and M. Wehling-henricks, The Journal of Physiology, vol.155, issue.1, pp.327-363, 2007.
DOI : 10.1083/jcb.200105110

S. Corti, Chemotactic Factors Enhance Myogenic Cell Migration across an Endothelial Monolayer, Experimental Cell Research, vol.268, issue.1, pp.36-44, 2001.
DOI : 10.1006/excr.2001.5267

L. Yahiaoui, D. Gvozdic, G. Danialou, M. Mack, and B. J. Petrof, CC family chemokines directly regulate myoblast responses to skeletal muscle injury, The Journal of Physiology, vol.12, issue.16, pp.3991-4004, 2008.
DOI : 10.1016/S1074-7613(00)80165-X

J. H. Phi, Chemokine Ligand 5 (CCL5) Derived from Endothelial Colony-Forming Cells (ECFCs) Mediates Recruitment of Smooth Muscle Progenitor Cells (SPCs) toward Critical Vascular Locations in Moyamoya Disease, PLOS ONE, vol.37, issue.6, p.169714, 2017.
DOI : 10.1371/journal.pone.0169714.s007

D. Patschan, M. Plotkin, and M. S. Goligorsky, Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ??a ira, Current Opinion in Pharmacology, vol.6, issue.2, pp.176-83, 2006.
DOI : 10.1016/j.coph.2005.10.013

, Scientific RepoRts | 7: 13294 | DOI:10, pp.41598-41615, 1038.

M. Y. Kim, C. W. Byeon, K. H. Hong, K. H. Han, and S. Jeong, Inhibition of the angiogenesis by the MCP-1 (monocyte chemoattractant protein-1) binding peptide, FEBS Letters, vol.275, issue.7, pp.1597-1601, 2005.
DOI : 10.1074/jbc.M000692200

R. Salcedo, Eotaxin (CCL11) Induces In Vivo Angiogenic Responses by Human CCR3+ Endothelial Cells, The Journal of Immunology, vol.166, issue.12, pp.7571-7579, 2001.
DOI : 10.4049/jimmunol.166.12.7571

S. Aidoudi and A. Bikfalvi, Summary, Thrombosis and Haemostasis, vol.104, issue.11, pp.941-949, 2010.
DOI : 10.1160/TH10-03-0193

Y. Iida, Peptide Inhibitor of CXCL4-CCL5 Heterodimer Formation, MKEY, Inhibits Experimental Aortic Aneurysm Initiation and Progression, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.33, issue.4, pp.718-744, 2013.
DOI : 10.1161/ATVBAHA.112.300329

Z. Raval and D. W. Losordo, Cell Therapy of Peripheral Arterial Disease: From Experimental Findings to Clinical Trials, Circulation Research, vol.112, issue.9, pp.1288-302, 2013.
DOI : 10.1161/CIRCRESAHA.113.300565

V. Hundelshausen, P. Petersen, F. Brandt, and E. , Summary, Thrombosis and Haemostasis, vol.97, issue.05, pp.704-717, 2007.
DOI : 10.1160/TH07-01-0066

M. B. Rookmaaker, Met-RANTES reduces endothelial progenitor cell homing to activated (glomerular) endothelium in vitro and in vivo, American Journal of Physiology-Renal Physiology, vol.293, issue.2, pp.624-654, 2007.
DOI : 10.1172/JCI119475

Z. Zhang, CCR5 facilitates endothelial progenitor cell recruitment and promotes the stabilization of atherosclerotic plaques in ApoE???/??? mice, Stem Cell Research & Therapy, vol.16, issue.1, p.36, 2015.
DOI : 10.1016/j.cellsig.2004.04.007

Y. Ishida, Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing, Journal of Clinical Investigation, vol.122, issue.2, pp.711-732, 2012.
DOI : 10.1172/JCI43027DS1

A. E. Proudfoot, B Motif of RANTES Is the Principal Site for Heparin Binding and Controls Receptor Selectivity, Journal of Biological Chemistry, vol.248, issue.14, pp.10620-10626, 2001.
DOI : 10.1084/jem.187.8.1215

URL : http://www.jbc.org/content/276/14/10620.full.pdf

W. G. Liang, Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3, Proceedings of the National Academy of Sciences, vol.7, issue.2, pp.5000-5005, 2016.
DOI : 10.1107/S0021889895007047

URL : http://www.pnas.org/content/113/18/5000.full.pdf

S. Segerer, The basic residue cluster 55KKWVR59 in CCL5 is required for in vivo biologic function, Molecular Immunology, vol.46, issue.13, pp.2533-2538, 2009.
DOI : 10.1016/j.molimm.2009.05.015

V. Braunersreuther, Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice, Journal of Molecular and Cellular Cardiology, vol.48, issue.4, pp.789-98, 2010.
DOI : 10.1016/j.yjmcc.2009.07.029

R. Solari, Receptor-mediated Endocytosis of CC-chemokines, Journal of Biological Chemistry, vol.227, issue.15, pp.9617-9637, 1997.
DOI : 10.1038/383400a0

URL : http://www.jbc.org/content/272/15/9617.full.pdf

T. Bonnard, Abdominal Aortic Aneurysms Targeted by Functionalized Polysaccharide Microparticles: a new Tool for SPECT Imaging, Theranostics, vol.4, issue.6, pp.592-603, 2014.
DOI : 10.7150/thno.7757

URL : http://www.thno.org/v04p0592.pdf

D. Cunha and F. F. , Comparison of treatments of peripheral arterial disease with mesenchymal stromal cells and mesenchymal stromal cells modified with granulocyte and macrophage colony-stimulating factor, Cytotherapy, vol.15, issue.7, pp.820-829, 2013.
DOI : 10.1016/j.jcyt.2013.02.014

A. Kirby, V. Gebski, and A. C. Keech, Determining the sample size in a clinical trial, Med J Austin, vol.177, pp.256-263, 2002.

I. M. Tarlov, SPINAL CORD COMPRESSION STUDIES, A.M.A. Archives of Neurology & Psychiatry, vol.71, issue.5, pp.588-597, 1954.
DOI : 10.1001/archneurpsyc.1954.02320410050004

T. S. Westvik, Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis, Journal of Vascular Surgery, vol.49, issue.2, pp.464-473, 2009.
DOI : 10.1016/j.jvs.2008.08.077

URL : https://doi.org/10.1016/j.jvs.2008.08.077

M. Drinane, The Antiangiogenic Activity of rPAI-123 Inhibits Vasa Vasorum and Growth of Atherosclerotic Plaque, Circulation Research, vol.104, issue.3, pp.337-382, 2009.
DOI : 10.1161/CIRCRESAHA.108.184622

G. Sarlon, Therapeutic effect of fucoidan-stimulated endothelial colony-forming cells in peripheral ischemia, Journal of Thrombosis and Haemostasis, vol.99, issue.1, pp.38-48, 2012.
DOI : 10.1182/blood.V99.1.44

C. Bouvard, ??6-Integrin Subunit Plays a Major Role in the Proangiogenic Properties of Endothelial Progenitor Cells, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.8, pp.1569-75, 2010.
DOI : 10.1161/ATVBAHA.110.209163

M. Lavergne, Cord blood-circulating endothelial progenitors for treatment of vascular diseases, Cell Proliferation, vol.119, pp.44-47, 2001.
DOI : 10.1161/CIRCULATIONAHA.108.788653