P. Perrot, D. Heymann, C. Charrier, S. Couillaud, F. Rédini et al., Extraosseous Bone Formation Obtained by Association of Mesenchymal Stem Cells With a Periosteal Flap in the Rat, Annals of Plastic Surgery, vol.59, issue.2, pp.201-206, 2007.
DOI : 10.1097/SAP.0b013e31802c1ff2

T. M. Kauer, J. Figueiredo, S. Hingtgen, and K. Shah, Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas, Nature Neuroscience, vol.10, issue.2, pp.197-204, 2011.
DOI : 10.1016/S1474-4422(11)70022-9

A. F. Godier-furnémont, Y. Tekabe, M. Kollaros, G. Eng, A. Morales et al., Noninvasive Imaging of Myocyte Apoptosis Following Application of a Stem Cell-Engineered Delivery Platform to Acutely Infarcted Myocardium, Journal of Nuclear Medicine, vol.54, issue.6, pp.977-983, 2013.
DOI : 10.2967/jnumed.112.112979

A. Paul, A. Cantor, D. Shum-tim, and S. Prakash, Superior Cell Delivery Features of Genipin Crosslinked Polymeric Microcapsules: Preparation, In Vitro Characterization and Pro-Angiogenic Applications Using Human Adipose Stem Cells, Molecular Biotechnology, vol.135, issue.2, pp.116-127, 2011.
DOI : 10.1016/j.jtcvs.2007.07.071

G. Desando, C. Cavallo, F. Sartoni, L. Martini, A. Parrilli et al.,

B. M. Grigolo, A. M. Mackay, S. C. Beck, R. K. Jaiswal, and M. A. Moorman, Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model, Arthritis Res. Ther, vol.15, 2013.

D. W. Simonetti, S. Craig, and D. R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-147, 1999.

F. J. Vizoso, N. Eiro, S. Cid, J. Schneider, and R. Perez-fernandez, Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine, International Journal of Molecular Sciences, vol.15, issue.9, p.1852, 2017.
DOI : 10.1016/j.stemcr.2016.05.003

W. S. Toh, R. C. Lai, J. H. Hui, and S. K. Lim, MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment, Seminars in Cell & Developmental Biology, vol.67, pp.56-64, 2017.
DOI : 10.1016/j.semcdb.2016.11.008

C. Vinatier, D. Mrugala, C. Jorgensen, J. Guicheux, and D. Noël, Cartilage engineering: a crucial combination of cells, biomaterials and biofactors, Trends in Biotechnology, vol.27, issue.5, pp.307-314, 2009.
DOI : 10.1016/j.tibtech.2009.02.005

B. A. Aguado, W. Mulyasasmita, J. Su, K. J. Lampe, and S. C. Heilshorn, Improving Viability of Stem Cells During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers, Tissue Engineering Part A, vol.18, issue.7-8, pp.806-815, 2012.
DOI : 10.1089/ten.tea.2011.0391

M. H. Amer, F. R. Rose, K. M. Shakesheff, M. Modo, and L. J. White, Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges, npj Regenerative Medicine, vol.19, issue.1, p.23, 2017.
DOI : 10.1038/nbt1001-934

O. Detante, A. Moisan, J. Dimastromatteo, M. Richard, L. Riou et al., Tc-HMPAO-Labeled Human Mesenchymal Stem Cells after Stroke: In Vivo Imaging and Biodistribution, Cell Transplantation, vol.16, issue.12, pp.1369-1379, 2009.
DOI : 10.1038/sj.jcbfm.9600432

K. Toupet, M. Maumus, J. Peyrafitte, P. Bourin, P. L. Van-lent et al., Long-Term Detection of Human Adipose-Derived Mesenchymal Stem Cells After Intraarticular Injection in SCID Mice, Arthritis & Rheumatism, vol.46, issue.7, pp.1786-1794, 2013.
DOI : 10.1002/art.10126

A. Blocki, S. Beyer, J. Dewavrin, A. Goralczyk, Y. Wang et al., Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium, Biomaterials, vol.53, pp.12-24, 2015.
DOI : 10.1016/j.biomaterials.2015.02.075

M. J. Leijs, E. Villafuertes, J. C. Haeck, W. J. Koevoet, B. Fernandez-gutierrez et al.,

M. R. Bernsen, G. M. Van-buul, and G. J. Van-osch, Encapsulation of allogeneic mesenchymal stem cells in alginate extends local presence and therapeutic function, Eur. Cell Mater, vol.33, pp.43-58, 2017.

K. E. Smith, R. C. Johnson, and K. K. Papas, Update on cellular encapsulation, Xenotransplantation, vol.56, issue.8 Suppl, 2018.
DOI : 10.1007/s00125-013-2906-0

F. Lim and A. M. Sun, Microencapsulated islets as bioartificial endocrine pancreas, Science, vol.210, issue.4472, pp.908-910, 1980.
DOI : 10.1126/science.6776628

G. Orive, E. Santos, D. Poncelet, R. M. Hernández, J. L. Pedraz et al., Cell encapsulation: technical and clinical advances, Trends in Pharmacological Sciences, vol.36, issue.8, pp.537-546, 2015.
DOI : 10.1016/j.tips.2015.05.003

A. Forget, A. Blaeser, F. Miessmer, M. Köpf, D. F. Campos et al., Mechanically Tunable Bioink for 3D Bioprinting of Human Cells. Adv. Healthc. Mater. 2017, 6. [CrossRef]

M. A. Leroux, F. Guilak, and L. A. Setton, Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration, Journal of Biomedical Materials Research, vol.16, issue.1, pp.46-53, 1999.
DOI : 10.1021/ma00242a019

P. Weiss, J. Guicheux, G. Daculsi, G. Grimandi, and C. Vinatier, Use of a Hydrogel for the Culture of Chondrocytes, 2013.

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.215-228, 2002.
DOI : 10.1016/S0001-8686(02)00035-0

URL : https://hal.archives-ouvertes.fr/inserm-00198799

A. Fatimi, J. F. Tassin, S. Quillard, M. A. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, issue.5, pp.533-543, 2008.
DOI : 10.1016/j.biomaterials.2007.10.032

URL : https://hal.archives-ouvertes.fr/inserm-00383358

S. Laïb, B. H. Fellah, A. Fatimi, S. Quillard, C. Vinatier et al., The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering, Biomaterials, vol.30, issue.8, pp.1568-1577, 2009.
DOI : 10.1016/j.biomaterials.2008.11.031

B. Lee, P. Ravindra, and E. Chan, Size and Shape of Calcium Alginate Beads Produced by Extrusion Dripping, Chemical Engineering & Technology, vol.29, pp.1627-1642, 2013.
DOI : 10.1007/s00449-006-0070-3

D. L. Elbert, Liquid???liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review, Acta Biomaterialia, vol.7, issue.1, pp.31-56, 2011.
DOI : 10.1016/j.actbio.2010.07.028

A. Schmit, L. Courbin, M. Marquis, and D. Renard, Panizza, P. a pendant drop method for the production of calibrated double emulsions and emulsion gels, pp.28504-28510, 2014.

F. Hached, C. Vinatier, P. Pinta, P. Hulin, C. Le-visage et al., Polysaccharide Hydrogels Support the Long-Term Viability of Encapsulated Human Mesenchymal Stem Cells and Their Ability to Secrete Immunomodulatory Factors, Stem Cells International, vol.2017, p.9303598, 2017.
DOI : 10.1074/jbc.M111.271247

URL : https://hal.archives-ouvertes.fr/inserm-01844720

W. J. Duncanson, T. Lin, A. R. Abate, S. Seiffert, R. K. Shah et al., Microfluidic synthesis of advanced microparticles for encapsulation and controlled release, Lab on a Chip, vol.132, issue.12, pp.2135-2145, 2012.
DOI : 10.1021/ja102156h

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell et al., Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology, Angewandte Chemie International Edition, vol.9, issue.80, pp.5846-5868, 2010.
DOI : 10.1039/b820511f

L. Hidalgo-san-jose, P. Stephens, B. Song, and D. Barrow, Microfluidic Encapsulation Supports Stem Cell Viability, Proliferation, and Neuronal Differentiation, Tissue Engineering Part C: Methods, vol.24, issue.3, 2018.
DOI : 10.1089/ten.tec.2017.0368

E. Quevedo, J. Steinbacher, and D. T. Mcquade, Interfacial Polymerization within a Simplified Microfluidic Device:?? Capturing Capsules, Journal of the American Chemical Society, vol.127, issue.30, pp.10498-10499, 2005.
DOI : 10.1021/ja0529945

W. Engl, M. Tachibana, P. Panizza, and R. Backov, Millifluidic as a versatile reactor to tune size and aspect ratio of large polymerized objects, International Journal of Multiphase Flow, vol.33, issue.8, pp.897-903, 2007.
DOI : 10.1016/j.ijmultiphaseflow.2007.03.007

URL : https://hal.archives-ouvertes.fr/hal-00730786

R. Tadmouri, M. Romano, L. Guillemot, O. Mondain-monval, R. Wunenburger et al., Millifluidic production of metallic microparticles, Soft Matter, vol.312, issue.41, pp.10704-10711, 2012.
DOI : 10.1016/j.colsurfa.2007.06.026

URL : https://hal.archives-ouvertes.fr/hal-00745459

L. Lukyanova, L. Séon, A. Aradian, O. Mondain-monval, J. Leng et al., Millifluidic synthesis of polymer core-shell micromechanical particles: Toward micromechanical resonators for acoustic metamaterials, Journal of Applied Polymer Science, vol.11, issue.6, pp.3512-3521, 2013.
DOI : 10.1039/C0LC00036A

URL : https://hal.archives-ouvertes.fr/hal-00802535

E. Martins, D. Poncelet, M. Marquis, J. Davy, and D. Renard, Monodisperse core-shell alginate (micro)-capsules with oil core generated from droplets millifluidic. Food Hydrocoll, p.63, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01527551

C. Amine, A. Boire, J. Davy, M. Marquis, and D. Renard, Droplets-based millifluidic for the rapid determination of biopolymers phase diagrams. Food Hydrocoll, pp.134-142, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608071

X. Sun, M. Liu, and Z. Xu, Microfluidic fabrication of multifunctional particles and their analytical applications, Talanta, vol.121, issue.121, pp.163-177
DOI : 10.1016/j.talanta.2013.12.060

N. Lorber, F. Sarrazin, P. Guillot, P. Panizza, A. Colin et al., Some recent advances in the design and the use of miniaturized droplet-based continuous process: Applications in chemistry and high-pressure microflows, Lab Chip, vol.78, issue.13, pp.779-787, 2011.
DOI : 10.1103/PhysRevE.78.046312

URL : https://hal.archives-ouvertes.fr/hal-00711709

W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Current Opinion in Colloid & Interface Science, vol.13, issue.4, pp.206-216, 2008.
DOI : 10.1016/j.cocis.2007.09.003

URL : https://hal.archives-ouvertes.fr/hal-00672548

E. Tumarkin and E. Kumacheva, Microfluidic generation of microgels from synthetic and natural polymers, Chemical Society Reviews, vol.18, issue.8, pp.2161-2168, 2009.
DOI : 10.1007/s10404-008-0271-y

H. H. Winter and F. Chambon, Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point, Journal of Rheology, vol.30, issue.2, pp.367-382, 1986.
DOI : 10.1122/1.549853

F. Chambon and H. H. Winter, Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry, Journal of Rheology, vol.31, issue.8, pp.683-697, 1987.
DOI : 10.1122/1.549955

S. J. Bidarra, C. C. Barrias, and P. L. Granja, Injectable alginate hydrogels for cell delivery in tissue engineering, Acta Biomaterialia, vol.10, issue.4, pp.1646-1662, 2014.
DOI : 10.1016/j.actbio.2013.12.006

C. Vinatier, D. Magne, P. Weiss, C. Trojani, N. Rochet et al., C C

P. Galera and G. Daculsi, et al. a silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, pp.6643-6651, 2005.

A. Fatimi, J. Tassin, R. Turczyn, M. A. Axelos, and P. Weiss, Gelation studies of a cellulose-based biohydrogel: The influence of pH, temperature and sterilization, Acta Biomaterialia, vol.5, issue.9, pp.3423-3432, 2009.
DOI : 10.1016/j.actbio.2009.05.030

URL : https://hal.archives-ouvertes.fr/inserm-00507127

X. Bourges, P. Weiss, A. Coudreuse, G. Daculsi, and G. Legeay, General properties of silated hydroxyethylcellulose for potential biomedical applications, Biopolymers, vol.15, issue.281, pp.232-238, 2002.
DOI : 10.1159/000419232

URL : https://hal.archives-ouvertes.fr/inserm-00198796

P. J. Kondiah, Y. E. Choonara, P. P. Kondiah, T. Marimuthu, P. Kumar et al., Pillay, V. a Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering. Molecules 2016, 21. [CrossRef]

B. F. Matlaga, L. P. Yasenchak, and T. N. Salthouse, Tissue response to implanted polymers: The significance of sample shape, Journal of Biomedical Materials Research, vol.2, issue.3, pp.391-397, 1976.
DOI : 10.3109/10731197509118613

S. W. Kim, Y. H. Bae, and T. Okano, Hydrogels: Swelling, drug loading, and release, Pharmaceutical Research, vol.09, issue.3, pp.283-290, 1992.
DOI : 10.1023/A:1015887213431

A. G. Lee, C. P. Arena, D. J. Beebe, and S. P. Palecek, Development of Macroporous Poly(ethylene glycol) Hydrogel Arrays within Microfluidic Channels, Biomacromolecules, vol.11, issue.12, pp.3316-3324, 2010.
DOI : 10.1021/bm100792y

S. M. Opal and V. A. Depalo, Anti-Inflammatory Cytokines, Chest, vol.117, issue.4, pp.1162-1172, 2000.
DOI : 10.1378/chest.117.4.1162

C. A. Feghali and T. M. Wright, Cytokines in acute and chronic inflammation, Front. Biosci, vol.2, pp.12-26, 1997.

A. I. Caplan and D. Correa, The MSC: An Injury Drugstore, Cell Stem Cell, vol.9, issue.1, pp.11-15
DOI : 10.1016/j.stem.2011.06.008

L. Figueiredo, R. Pace, C. Arros, G. Réthoré, J. Guicheux et al., Assessing glucose and oxygen diffusion in hydrogels for the rational design of 3D stem cell scaffolds in regenerative medicine, Journal of Tissue Engineering and Regenerative Medicine, vol.21, issue.1, 2018.
DOI : 10.1016/0009-2509(66)85096-0

URL : https://hal.archives-ouvertes.fr/inserm-01844285

L. Moussa, G. Pattappa, B. Doix, S. Benselama, C. Demarquay et al., A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage, Biomaterials, vol.115, pp.40-52, 2017.
DOI : 10.1016/j.biomaterials.2016.11.017

URL : https://hal.archives-ouvertes.fr/inserm-01845123

M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science, vol.20, issue.5, pp.417-437, 1965.
DOI : 10.1016/0095-8522(65)90022-X

F. Flory, Principles of Polymer Chemistry, 1953.

S. Mazzitelli, L. Capretto, F. Quinci, R. Piva, and C. Nastruzzi, Preparation of cell-encapsulation devices in confined microenvironment, Advanced Drug Delivery Reviews, vol.65, issue.11-12, pp.1533-1555, 2013.
DOI : 10.1016/j.addr.2013.07.021

C. Merceron, S. Portron, C. Vignes-colombeix, E. Rederstorff, M. Masson et al., Pharmacological Modulation of Human Mesenchymal Stem Cell Chondrogenesis by a Chemically Oversulfated Polysaccharide of Marine Origin: Potential Application to Cartilage Regenerative Medicine, STEM CELLS, vol.71, issue.4, pp.471-480, 2012.
DOI : 10.1159/000093553