J. K. Suh, H. W. Matthew, T. K. West, and J. L. , Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review Photopolymerizable hydrogels for tissue engineering applications, Biomaterials Biomaterials, vol.21, issue.23, pp.2589-2598, 2000.

F. Brandl, F. Sommer, and A. Goepferich, Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior, Biomaterials, vol.28, issue.2, pp.134-146, 2007.
DOI : 10.1016/j.biomaterials.2006.09.017

A. S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev, vol.43, pp.3-12, 2002.

A. C. Jen, M. C. Wake, and A. G. Mikos, Review: Hydrogels for cell immobilization, Biotechnology and Bioengineering, vol.122, issue.4, pp.357-364, 1996.
DOI : 10.1007/3540587888_17

P. Weiss, O. Gauthier, J. M. Bouler, G. Grimandi, and G. Daculsi, Injectable bone substitute using a hydrophilic polymer, Bone, vol.25, issue.2, pp.67-70, 1999.
DOI : 10.1016/S8756-3282(99)00146-5

URL : https://hal.archives-ouvertes.fr/inserm-00143787

G. A. Valle, G. Daculsi, R. Turczyn, P. Weiss, M. Lapkowski et al., Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS In situ self-hardening bioactive composite for bone and dental surgery Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Biomaterials J. Biomater. Sci. Polym. Ed. Adv. Colloid Interface Sci, vol.23, issue.99, pp.2789-2794, 2000.

C. Vinatier, D. Magne, P. Weiss, C. Trojani, N. Rochet et al., A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, issue.33, pp.6643-6651, 2005.
DOI : 10.1016/j.biomaterials.2005.04.057

URL : https://hal.archives-ouvertes.fr/inserm-00110465

C. Trojani, P. Weiss, J. F. Michiels, C. Vinatier, J. Guicheux et al., Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel, Biomaterials, vol.26, issue.27, pp.5509-5517, 2005.
DOI : 10.1016/j.biomaterials.2005.02.001

URL : https://hal.archives-ouvertes.fr/inserm-00110471

C. Trojani, F. Boukhechba, J. C. Scimeca, F. Vandenbos, J. F. Michiels et al., Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells, Biomaterials, vol.27, issue.17, pp.3256-3264, 2006.
DOI : 10.1016/j.biomaterials.2006.01.057

URL : https://hal.archives-ouvertes.fr/inserm-00110459

C. Merceron, C. Vinatier, S. Portron, M. Masson, J. Amiaud et al., Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells, American Journal of Physiology-Cell Physiology, vol.449, issue.2, pp.355-364, 2010.
DOI : 10.1089/107632701300062859

T. Nicolai and S. Cocard, Light Scattering Study of the Dispersion of Laponite, Langmuir, vol.16, issue.21, pp.8189-8193, 2000.
DOI : 10.1021/la9915623

A. Mourchid, E. Lecolier, H. V. Damme, and P. Levitz, On Viscoelastic, Birefringent, and Swelling Properties of Laponite Clay Suspensions:?? Revisited Phase Diagram, Langmuir, vol.14, issue.17, pp.4718-4723, 1998.
DOI : 10.1021/la980117p

K. Haraguchi and T. Takehisa, Nanocomposite Hydrogels: A Unique Organic???Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties, Advanced Materials, vol.14, issue.16, pp.1120-1124, 2002.
DOI : 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

K. Haraguchi, T. Takehisa, and S. Fan, -isopropylacrylamide) and Clay, Macromolecules, vol.35, issue.27, pp.10162-10171, 2002.
DOI : 10.1021/ma021301r

K. Haraguchi, R. Farnworth, A. Ohbayashi, and T. Takehisa, -dimethylacrylamide) and Clay, Macromolecules, vol.36, issue.15, pp.5732-5741, 2003.
DOI : 10.1021/ma034366i

K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, and E. Elliott, Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA???Clay Nanocomposite Hydrogels, Macromolecules, vol.38, issue.8, pp.3482-3490, 2005.
DOI : 10.1021/ma047431c

Y. Liu, M. F. Zhu, X. L. Liu, W. Zhang, B. Sun et al., High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics, Polymer, vol.47, issue.1, pp.1-5, 2006.
DOI : 10.1016/j.polymer.2005.11.030

L. Figueiredo, R. Pace, C. D-'arros, G. Réthoré, J. Guicheux et al., Assessing glucose and oxygen diffusion in hydrogels for the rational design of 3D stem cell scaffolds in regenerative medicine, Journal of Tissue Engineering and Regenerative Medicine, vol.21, issue.1
DOI : 10.1016/0009-2509(66)85096-0

, Tissue Eng. Regen. Med, vol.12, pp.123-1246, 2018.

A. Fatimi, J. Tassin, S. Quillard, M. A. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, issue.5, pp.533-543, 2008.
DOI : 10.1016/j.biomaterials.2007.10.032

URL : https://hal.archives-ouvertes.fr/inserm-00383358

Y. Misawa, N. Koumura, H. Matsumoto, N. Tamaoki, and M. Yoshida, -Phenylene)dibenzamide Linkages, Macromolecules, vol.41, issue.22, pp.8841-8846, 2008.
DOI : 10.1021/ma801350k

G. M. Kavanagh and S. B. Ross-murphy, Rheological characterisation of polymer gels, Progress in Polymer Science, vol.23, issue.3, pp.533-562, 1998.
DOI : 10.1016/S0079-6700(97)00047-6

S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Reviews of Modern Physics, vol.47, issue.1, pp.1-89, 1943.
DOI : 10.1080/14786442408634406

I. Avramov, Relationship between diffusion, self-diffusion and viscosity, Journal of Non-Crystalline Solids, vol.355, issue.10-12, pp.745-747, 2009.
DOI : 10.1016/j.jnoncrysol.2009.02.009

URL : http://arxiv.org/pdf/0901.3460

P. A. Wheeler, J. Z. Wang, J. Baker, and L. J. Mathias, Synthesis and Characterization of Covalently Functionalized Laponite Clay, Chemistry of Materials, vol.17, issue.11, pp.3012-3018, 2005.
DOI : 10.1021/cm050306a

P. A. Wheeler, J. Z. Wang, and L. J. Mathias, Poly(methyl methacrylate)/Laponite Nanocomposites:?? Exploring Covalent and Ionic Clay Modifications, Chemistry of Materials, vol.18, issue.17, pp.3937-3945, 2006.
DOI : 10.1021/cm0526361

F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems, Polymer, vol.42, issue.23, pp.9523-9529, 2001.
DOI : 10.1016/S0032-3861(01)00472-4

M. D. Frogley, D. Ravich, and H. D. Wagner, Mechanical properties of carbon nanoparticle-reinforced elastomers, Composites Science and Technology, vol.63, issue.11, pp.1647-1654, 2003.
DOI : 10.1016/S0266-3538(03)00066-6

H. Montes, T. Chaussee, A. Papon, F. Lequeux, and L. Guy, Particles in model filled rubber: Dispersion and mechanical properties, The European Physical Journal E, vol.44, issue.3, pp.263-268, 2010.
DOI : 10.1016/S0032-3861(02)00882-0

M. L. Cooper, J. F. Hansbrough, R. L. Spielvogel, R. Cohen, R. L. Bartel et al., In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh, Biomaterials, vol.12, issue.2, pp.243-248, 1991.
DOI : 10.1016/0142-9612(91)90207-Q

H. Y. Li, K. L. Lin, and J. Chang, Preparation of macroporous polymer scaffolds using calcined cancellous bone as a template, Journal of Biomaterials Science, Polymer Edition, vol.21, issue.5, pp.575-584, 2005.
DOI : 10.1016/S0736-0266(03)00005-6

C. Boyer, L. Figueiredo, R. Pace, J. Lesoeur, T. Rouillon et al., C.; Tassin, J.-F. J

G. Rethore, Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering, Acta Biomater, vol.65, pp.112-122, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02060661

G. Janer, E. Fernandez-rosas, E. Mas-del-molino, D. Gonzalez-galvez, G. Vilar et al., toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers, Nanotoxicology, vol.110, issue.7, pp.279-294, 2014.
DOI : 10.1021/jp062327d

J. I. Dawson, J. M. Kanczler, X. B. Yang, G. S. Attard, and R. O. Oreffo, Clay Gels For the Delivery of Regenerative Microenvironments, Advanced Materials, vol.43, issue.29, pp.3304-3308, 2011.
DOI : 10.1016/j.bone.2008.02.013

K. Haraguchi, T. Takehisa, and M. Ebato, Control of Cell Cultivation and Cell Sheet Detachment on the Surface of Polymer/Clay Nanocomposite Hydrogels, Biomacromolecules, vol.7, issue.11, pp.3267-3275, 2006.
DOI : 10.1021/bm060549b

B. P. Nair, M. Sindhu, and P. D. Nair, Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications, Colloids and Surfaces B: Biointerfaces, vol.143, pp.423-430, 2016.
DOI : 10.1016/j.colsurfb.2016.03.033

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http, Licensee MDPI