A. G. Ardakani, U. Cheema, R. A. Brown, and R. J. Shipley, Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model, Journal of The Royal Society Interface, vol.136, issue.19, pp.1-11, 2014.
DOI : 10.1039/c1an15249a

URL : http://rsif.royalsocietypublishing.org/content/royinterface/11/98/20140501.full.pdf

E. Bland, D. Dreau, and K. J. Burg, Overcoming hypoxia to improve tissue-engineering approaches to regenerative medicine, Journal of Tissue Engineering and Regenerative Medicine, vol.91, issue.4, pp.505-514, 2013.
DOI : 10.1002/bit.20532

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Advances in Colloid and Interface Science, vol.99, issue.3, pp.215-228, 2002.
DOI : 10.1016/S0001-8686(02)00035-0

URL : https://hal.archives-ouvertes.fr/inserm-00198799

U. Cheema, Z. Rong, O. Kirresh, A. J. Macrobert, P. Vadgama et al., Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models, Journal of Tissue Engineering and Regenerative Medicine, vol.121, issue.2, pp.77-84, 2012.
DOI : 10.1111/j.1365-2818.1981.tb01211.x

Y. C. Choi, J. S. Choi, C. H. Woo, and Y. W. Cho, Stem cell delivery systems inspired by tissue-specific niches, Journal of Controlled Release, vol.193, pp.42-50, 2014.
DOI : 10.1016/j.jconrel.2014.06.032

A. Colom, R. Galgoczy, I. Almendros, A. Xaubet, R. Farré et al., Oxygen diffusion and consumption in extracellular matrix gels: Implications for designing three-dimensional cultures, Journal of Biomedical Materials Research Part A, vol.26, issue.8, pp.2776-2784, 2014.
DOI : 10.1074/jbc.M604801200

J. Crank, The mathematics of diffusion, 1975.

J. Demol, D. Lambrechts, L. Geris, J. Schrooten, and H. Van-oosterwyck, Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels, Biomaterials, vol.32, issue.1, pp.107-118, 2011.
DOI : 10.1016/j.biomaterials.2010.08.093

J. L. Drury and D. J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, vol.24, issue.24, pp.4337-4351, 2003.
DOI : 10.1016/S0142-9612(03)00340-5

S. M. Ehsan and S. C. George, Nonsteady State Oxygen Transport in Engineered Tissue: Implications for Design, Tissue Engineering Part A, vol.19, issue.11-12, pp.1433-1442, 2013.
DOI : 10.1089/ten.tea.2012.0587

URL : http://europepmc.org/articles/pmc3638538?pdf=render

M. J. Farrell, J. I. Shin, L. J. Smith, and R. L. Mauck, Functional consequences of glucose and oxygen deprivation on??engineered mesenchymal stem cell-based cartilage constructs, Osteoarthritis and Cartilage, vol.23, issue.1, pp.134-142, 2015.
DOI : 10.1016/j.joca.2014.09.012

URL : https://doi.org/10.1016/j.joca.2014.09.012

A. Fatimi, J. F. Tassin, S. Quillard, M. A. Axelos, and P. Weiss, The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices, Biomaterials, vol.29, issue.5, pp.29-533, 2008.
DOI : 10.1016/j.biomaterials.2007.10.032

URL : https://hal.archives-ouvertes.fr/inserm-00383358

A. Fatimi, J. ?. Tassin, R. Turczyn, M. A. Axelos, and P. Weiss, Gelation studies of a cellulose-based biohydrogel: The influence of pH, temperature and sterilization, Acta Biomaterialia, vol.5, issue.9, pp.3423-3432, 2009.
DOI : 10.1016/j.actbio.2009.05.030

URL : https://hal.archives-ouvertes.fr/inserm-00507127

R. Gavara and V. Compañ, Oxygen, water, and sodium chloride transport in soft contact lenses materials, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.47, issue.8, pp.2218-2231, 2016.
DOI : 10.1021/ie071403b

Y. L. Han, S. Wang, X. Zhang, Y. Li, G. Huang et al., Engineering physical microenvironment for stem cell based regenerative medicine, Drug Discovery Today, vol.19, issue.6, pp.763-773, 2014.
DOI : 10.1016/j.drudis.2014.01.015

A. S. Hoffman, Hydrogels for biomedical applications Advanced Drug Delivery Reviews, pp.18-23, 2012.

A. C. Hulst, H. J. Hens, R. M. Buitelaar, and J. Tramper, Determination of the effective diffusion coefficient of oxygen in gel materials in relation to gel concentration, Biotechnology Techniques, vol.26, issue.3, pp.199-204, 1989.
DOI : 10.1007/BF01875620

E. M. Johnson, D. A. Berk, R. K. Jain, and W. M. Deen, Hindered diffusion in agarose gels: test of effective medium model, Biophysical Journal, vol.70, issue.2, pp.1017-1023, 1996.
DOI : 10.1016/S0006-3495(96)79645-5

URL : https://doi.org/10.1016/s0006-3495(96)79645-5

S. Laïb, B. H. Fellah, A. Fatimi, S. Quillard, C. Vinatier et al., The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering, Biomaterials, vol.30, issue.8, pp.1568-1577, 2009.
DOI : 10.1016/j.biomaterials.2008.11.031

J. Malda, J. Rouwkema, D. E. Martens, E. P. Le-compte, F. K. Kooy et al., Oxygen gradients in tissue-engineered Pegt/Pbt cartilaginous constructs: Measurement and modeling, Biotechnology and Bioengineering, vol.155, issue.1, pp.9-18, 2004.
DOI : 10.1007/978-1-4615-1875-4_4

Y. Martin and P. Vermette, Bioreactors for tissue mass culture: Design, characterization, and recent advances, Biomaterials, vol.26, issue.35, pp.7481-7503, 2005.
DOI : 10.1016/j.biomaterials.2005.05.057

E. Mathieu, G. Lamirault, C. Toquet, P. Lhommet, E. Rederstorff et al., Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction, PLoS ONE, vol.102, issue.12, 2012.
DOI : 10.1371/journal.pone.0051991.t002

URL : https://hal.archives-ouvertes.fr/inserm-00770250

R. J. Mcmurtrey, Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids, Tissue Engineering Part C: Methods, vol.22, issue.3, pp.221-249, 2016.
DOI : 10.1089/ten.tec.2015.0375

C. Merceron, S. Portron, M. Masson, J. Lesoeur, B. H. Fellah et al., The Effect of Two- and Three-Dimensional Cell Culture on the Chondrogenic Potential of Human Adipose-Derived Mesenchymal Stem Cells after Subcutaneous Transplantation with an Injectable Hydrogel, Cell Transplantation, vol.7, issue.10, pp.1575-1588, 2011.
DOI : 10.1089/107632701300062859

C. Merceron, C. Vinatier, P. Sophie, M. Martial, J. Amiaud et al., Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells, American Journal of Physiology-Cell Physiology, vol.449, issue.2, pp.355-364, 2009.
DOI : 10.1089/107632701300062859

A. Mohyeldin, T. Garzón?muvdi, and A. Quiñones?hinojosa, Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche, Cell Stem Cell, vol.7, issue.2, pp.150-161, 2010.
DOI : 10.1016/j.stem.2010.07.007

G. Pattappa, H. K. Heywood, J. D. De-bruijn, and D. A. Lee, The metabolism of human mesenchymal stem cells during proliferation and differentiation, Journal of Cellular Physiology, vol.13, issue.10, pp.2562-2570, 2011.
DOI : 10.1089/ten.2007.0050

N. A. Peppas, Hydrogels in medicine and pharmacy, 1986.

E. Sachlos, J. T. Czernuszka, F. M. Everaerts, L. J. Janssen, and R. A. Tacken, Making Tissue Engineering Scaffolds Work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds, European Cells and Materials, vol.5, issue.273, pp.29-40, 1993.
DOI : 10.22203/eCM.v005a03

H. Suhaimi, S. Wang, T. Thornton, and D. B. Das, On glucose diffusivity of tissue engineering membranes and scaffolds, Chemical Engineering Science, vol.126, pp.244-256, 2015.
DOI : 10.1016/j.ces.2014.12.029

C. Trojani, F. Boukhechba, J. ?. Scimeca, F. Vandenbos, J. ?. Michiels et al., Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells, Biomaterials, vol.27, issue.17, pp.3256-3264, 2006.
DOI : 10.1016/j.biomaterials.2006.01.057

URL : https://hal.archives-ouvertes.fr/inserm-00110459

C. Trojani, P. Weiss, J. ?. Michiels, C. Vinatier, J. Guicheux et al., Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel, Biomaterials, vol.26, issue.27, pp.5509-5517, 2005.
DOI : 10.1016/j.biomaterials.2005.02.001

URL : https://hal.archives-ouvertes.fr/inserm-00110471

R. Turczyn, P. Weiss, M. Lapkowski, and G. Daculsi, In situ self hardening bioactive composite for bone and dental surgery, Journal of Biomaterials Science, Polymer Edition, vol.476, issue.2, pp.217-223, 2000.
DOI : 10.1021/bk-1992-0476.ch015

URL : https://hal.archives-ouvertes.fr/inserm-00148609

J. E. Valentin, D. O. Freytes, J. M. Grasman, C. Pesyna, J. Freund et al., Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering, Journal of Biomedical Materials Research Part A, vol.28, issue.112, pp.1010-1017, 2009.
DOI : 10.3109/10623320109063154

C. Vinatier, D. Magne, P. Weiss, C. Trojani, N. Rochet et al., A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes, Biomaterials, vol.26, issue.33, pp.6643-6651, 2005.
DOI : 10.1016/j.biomaterials.2005.04.057

URL : https://hal.archives-ouvertes.fr/inserm-00110465

D. L. Wise and G. Houghton, The diffusion coefficients of ten slightly soluble gases in water at 10???60??C, Chemical Engineering Science, vol.21, issue.11, pp.999-1010, 1966.
DOI : 10.1016/0009-2509(66)85096-0